Suppr超能文献

用于细胞治疗应用的带槽灌注平板生物反应器中的运输

Transport in a grooved perfusion flat-bed bioreactor for cell therapy applications.

作者信息

Horner M, Miller W M, Ottino J M, Papoutsakis E T

机构信息

Northwestern University, Department of Chemical Engineering, 2145 Sheridan Road E136, Evanston, Illinois 60208-3120, USA.

出版信息

Biotechnol Prog. 1998 Sep-Oct;14(5):689-98. doi: 10.1021/bp980067e.

Abstract

This study considers the transport of oxygen (a growth-associated solute) and lactate (a metabolic byproduct) in a flat-bed perfusion chamber modified to retain cells through the addition of grooves, perpendicular to the direction of flow, at the chamber bottom. The chamber has been successfully applied to hematopoietic cell culture and may be useful for other basic and applied biomedical applications. The objective of this study is to characterize the culture environment in terms of solute transport under various operational conditions. This will allow one to improve the design and operating strategy of the perfusion system for maximizing cell numbers. The system is numerically simulated using the finite element package FIDAP. The reaction kinetics describing oxygen uptake by cells are simplified to zero order to give an upper bound for the oxygen consumption. A flat-bed chamber without grooves is considered here as a benchmark. We show that the growth environment is not oxygen limited (local oxygen concentration above 10 microM) for a variety of flow rates and culture conditions (qO2 = 0.1 micromol/(10(6) cells h)). With a medium flow rate of 2.5 mL/min through the reactor, the model predicts that the 29-cm2 reactor can support at least 33.4 x 10(6) total cells when the inlet medium is in equilibrium with high (20%) oxygen concentration. The culture becomes oxygen limited however for the same flow rate for low (5%) oxygen concentration and can only support 7.2 x 10(6) total cells. Comparison of grooved vs nongrooved chambers reveals that the presence of grooves only affects solute transport on a local scale. This result is attributed to the small size (200 microgram) of the cavities relative to the chamber dimensions. The comparison also yields an empirical relation that allows for rapid estimation of oxygen and lactate concentrations in the grooves using only the numerical simulation of the simpler nongrooved chamber. Finally, our investigation shows that, while decreasing the spacing between cavities decreases the total number of cells the reactor can support, the efficiency of the reactor is increased by 25% (on an area basis) without growth restriction.

摘要

本研究考虑了氧气(一种与生长相关的溶质)和乳酸(一种代谢副产物)在一个经过改进的平板灌注室中的传输情况。该灌注室通过在底部添加垂直于流动方向的凹槽来保留细胞。该灌注室已成功应用于造血细胞培养,可能对其他基础和应用生物医学应用也有用。本研究的目的是在各种操作条件下,根据溶质传输来表征培养环境。这将有助于改进灌注系统的设计和操作策略,以实现细胞数量的最大化。使用有限元软件包FIDAP对该系统进行了数值模拟。将描述细胞摄取氧气的反应动力学简化为零级,以给出氧气消耗的上限。这里将没有凹槽的平板室作为基准。我们表明,对于各种流速和培养条件(qO2 = 0.1微摩尔/(10^6个细胞·小时)),生长环境不存在氧气限制(局部氧气浓度高于10微摩尔)。当通过反应器的介质流速为2.5毫升/分钟时,模型预测,当入口介质与高(20%)氧气浓度达到平衡时,29平方厘米的反应器至少可以支持33.4×10^6个总细胞。然而,对于相同流速和低(5%)氧气浓度的情况,培养会受到氧气限制,只能支持7.2×10^6个总细胞。有凹槽与无凹槽室的比较表明,凹槽的存在仅在局部尺度上影响溶质传输。这一结果归因于相对于室尺寸而言,腔的尺寸较小(200微克)。该比较还得出了一个经验关系式,仅通过对更简单的无凹槽室进行数值模拟,就可以快速估算凹槽中的氧气和乳酸浓度。最后,我们的研究表明,虽然减小腔之间的间距会减少反应器能够支持的细胞总数,但在不限制生长的情况下,反应器的效率提高了25%(基于面积)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验