Allen C G, Baker D J, Albin J M, Oertli H E, Gillaspie D T, Olson D C, Furtak T E, Collins R T
Department of Physics, Colorado School of Mines, Golden, Colorado, USA.
Langmuir. 2008 Dec 2;24(23):13393-8. doi: 10.1021/la802621n.
Zinc oxide (ZnO) is an important material for hybrid inorganic-organic devices in which the characteristics of the interface can dominate both the structural and electronic properties of the system. These characteristics can be modified through chemical functionalization of the ZnO surface. One of the possible strategies involves covalent bonding of the modifier using silane chemistry. Whereas a significant body of work has been published regarding silane attachments to glass and SiO2, there is less information about the efficacy of this method for controlling the surface of metal oxides. Here we report our investigation of molecular layers attached to polycrystalline ZnO through silane bonding, controlled by an amine catalyst. The catalyst enables us to use triethoxysilane precursors and thereby avoid undesirable multilayer formation. The polycrystalline surface is a practical material, grown by sol-gel processing, that is under active exploration for device applications. Our study included terminations with alkyl and phenyl groups. We used water contact angles, infrared spectroscopy, and X-ray photoemission spectroscopy to evaluate the modified surfaces. Alkyltriethoxysilane functionalization of ZnO produced molecular layers with submonolayer coverage and evidence of disorder. Nevertheless, a very stable hydrophobic surface with contact angles approaching 106 degrees resulted. Phenyltriethoxysilane was found to deposit in a similar manner. The resulting surface, however, exhibited significantly different wetting as a result of the nature of the end group. Molecular layers of this type, with a variety of surface terminations that use the same molecular attachment scheme, should enable interface engineering that optimizes the chemical selectivity of ZnO biosensors or the charge-transfer properties of ZnO-polymer interfaces found in oxide-organic electronics.
氧化锌(ZnO)是用于无机-有机混合器件的重要材料,其中界面特性可主导系统的结构和电子性质。这些特性可通过ZnO表面的化学功能化进行修饰。一种可能的策略是利用硅烷化学将改性剂进行共价键合。虽然已有大量关于硅烷附着于玻璃和SiO₂的研究报道,但关于该方法用于控制金属氧化物表面的效果的信息较少。在此,我们报告了通过胺催化剂控制,利用硅烷键合附着在多晶ZnO上的分子层的研究。该催化剂使我们能够使用三乙氧基硅烷前驱体,从而避免不希望的多层形成。多晶表面是一种通过溶胶-凝胶工艺生长的实用材料,目前正积极探索其在器件应用方面的潜力。我们的研究包括用烷基和苯基进行封端。我们使用水接触角、红外光谱和X射线光电子能谱来评估改性表面。ZnO的烷基三乙氧基硅烷功能化产生了亚单层覆盖且有无序迹象的分子层。然而,形成了接触角接近106度的非常稳定的疏水表面。发现苯基三乙氧基硅烷以类似方式沉积。然而,由于端基的性质,所得表面表现出显著不同的润湿性。这种具有多种表面封端且使用相同分子附着方案的分子层,应能实现界面工程,优化ZnO生物传感器的化学选择性或氧化物-有机电子学中ZnO-聚合物界面的电荷转移特性。