Díaz María Elena, Ayala Guillermo, León Teresa, Zoncu Roberto, Toomre Derek
Departamento de Informática, Universidad de Valencia, Burjasot, Spain.
J Comput Biol. 2008 Nov;15(9):1221-36. doi: 10.1089/cmb.2008.0055.
Total Internal Reflection Fluorescence Microscopy (TIRFM) allows us to image fluorescenttagged proteins near the plasma membrane of living cells with high spatial-temporal resolution. Using TIRFM imaging of GFP-tagged clathrin endocytic proteins, areas of fluorescence are observed as overlapping spots of different sizes and durations. Standard procedures to measure protein-protein colocalization of dual labeled samples threshold the original graylevel images to segment areas covered by different proteins. This binary logic is not appropriate as it leaves a free tuning parameter which can influence the conclusions. Moreover, these procedures rely on simple statistical analysis based on correlation coefficients or visual inspection. We propose a probabilistic model to examine spatial-temporal dependencies. Image sequences of two proteins are modeled as a realization of a bivariate fuzzy temporal random set. Spatial-temporal dependencies are described by means of the pair-correlation function and the K-function and are tested using a Monte Carlo test. Five simulated image sequences were used to validate the performance of the procedure. Spatial and spatial-temporal dependencies were generated using a linked pairs model and a Poisson cluster model for the germs. To demonstrate the applicability in addressing current biological questions, we applied the procedure to fluorescent-tagged proteins involved in endocytosis (Clathrin, Hip1R, Epsin, and Caveolin). Results show that this procedure allows biologists to automatically quantify dependencies between molecules in a more formal and robust way. Image sequences and a Matlab toolbox for simulation and testing are available at http://www.uv.es/tracs/.
全内反射荧光显微镜(TIRFM)使我们能够以高时空分辨率对活细胞质膜附近的荧光标记蛋白进行成像。利用对绿色荧光蛋白(GFP)标记的网格蛋白内吞蛋白进行TIRFM成像,可观察到荧光区域呈现为不同大小和持续时间的重叠斑点。测量双标记样品中蛋白质 - 蛋白质共定位的标准程序是对原始灰度图像进行阈值处理,以分割不同蛋白质覆盖的区域。这种二元逻辑并不合适,因为它留下了一个可自由调整的参数,可能会影响结论。此外,这些程序依赖于基于相关系数的简单统计分析或目视检查。我们提出了一种概率模型来研究时空依赖性。将两种蛋白质的图像序列建模为二元模糊时间随机集的一个实现。通过对相关函数和K函数来描述时空依赖性,并使用蒙特卡罗检验进行测试。使用五个模拟图像序列来验证该程序的性能。利用链接对模型和细菌的泊松聚类模型生成空间和时空依赖性。为了证明该方法在解决当前生物学问题中的适用性,我们将该程序应用于参与内吞作用的荧光标记蛋白(网格蛋白、Hip1R、Epsin和小窝蛋白)。结果表明,该程序使生物学家能够以更正式、更稳健的方式自动量化分子之间的依赖性。图像序列以及用于模拟和测试的Matlab工具箱可在http://www.uv.es/tracs/获取。