Abriata Luciano A, Cassina Adriana, Tórtora Verónica, Marín Mónica, Souza Josá M, Castro Laura, Vila Alejandro J, Radi Rafael
Instituto de Biología Molecular y Celular de Rosario (IBR), Biophysics Section, Universidad Nacional de Rosario, 2000 Rosario, Argentina, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay, and Sección Bioquímica-Biología Molecular, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.
Instituto de Biología Molecular y Celular de Rosario (IBR), Biophysics Section, Universidad Nacional de Rosario, 2000 Rosario, Argentina, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay, and Sección Bioquímica-Biología Molecular, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Instituto de Biología Molecular y Celular de Rosario (IBR), Biophysics Section, Universidad Nacional de Rosario, 2000 Rosario, Argentina, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay, and Sección Bioquímica-Biología Molecular, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.
J Biol Chem. 2009 Jan 2;284(1):17-26. doi: 10.1074/jbc.M807203200. Epub 2008 Oct 29.
Cytochrome c, a mitochondrial electron transfer protein containing a hexacoordinated heme, is involved in other physiologically relevant events, such as the triggering of apoptosis, and the activation of a peroxidatic activity. The latter occurs secondary to interactions with cardiolipin and/or post-translational modifications, including tyrosine nitration by peroxynitrite and other nitric oxide-derived oxidants. The gain of peroxidatic activity in nitrated cytochrome c has been related to a heme site transition in the physiological pH region, which normally occurs at alkaline pH in the native protein. Herein, we report a spectroscopic characterization of two nitrated variants of horse heart cytochrome c by using optical spectroscopy studies and NMR. Highly pure nitrated cytochrome c species modified at solvent-exposed Tyr-74 or Tyr-97 were generated after treatment with a flux of peroxynitrite, separated, purified by preparative high pressure liquid chromatography, and characterized by mass spectrometry-based peptide mapping. It is shown that nitration of Tyr-74 elicits an early alkaline transition with a pKa = 7.2, resulting in the displacement of the sixth and axial iron ligand Met-80 and replacement by a weaker Lys ligand to yield an alternative low spin conformation. Based on the study of site-specific Tyr to Phe mutants in the four conserved Tyr residues, we also show that this transition is not due to deprotonation of nitro-Tyr-74, but instead we propose a destabilizing steric effect of the nitro group in the mobile Omega-loop of cytochrome c, which is transmitted to the iron center via the nearby Tyr-67. The key role of Tyr-67 in promoting the transition through interactions with Met-80 was further substantiated in the Y67F mutant. These results therefore provide new insights into how a remote post-translational modification in cytochrome c such as tyrosine nitration triggers profound structural changes in the heme ligation and microenvironment and impacts in protein function.
细胞色素c是一种含有六配位血红素的线粒体电子转移蛋白,它还参与其他生理相关事件,如细胞凋亡的触发以及过氧化物酶活性的激活。后者继发于与心磷脂的相互作用和/或翻译后修饰,包括过氧亚硝酸盐和其他一氧化氮衍生氧化剂引起的酪氨酸硝化。硝化细胞色素c中过氧化物酶活性的增加与生理pH区域内的血红素位点转变有关,而这种转变在天然蛋白质中通常发生在碱性pH条件下。在此,我们通过光谱学研究和核磁共振报告了马心脏细胞色素c的两种硝化变体的光谱特征。在用过氧亚硝酸盐处理后,生成了在溶剂暴露的Tyr-74或Tyr-97处修饰的高纯度硝化细胞色素c物种,将其分离,通过制备型高压液相色谱纯化,并通过基于质谱的肽图谱进行表征。结果表明,Tyr-74的硝化引发了早期碱性转变,其pKa = 7.2,导致第六个轴向铁配体Met-80的位移,并被较弱的Lys配体取代,从而产生另一种低自旋构象。基于对四个保守Tyr残基中位点特异性Tyr到Phe突变体的研究,我们还表明这种转变不是由于硝基-Tyr-74的去质子化,相反,我们提出细胞色素c的可移动Ω环中硝基的不稳定空间效应,该效应通过附近的Tyr-67传递到铁中心。Y67F突变体进一步证实了Tyr-67在通过与Met-80相互作用促进转变中的关键作用。因此,这些结果为细胞色素c中酪氨酸硝化等远程翻译后修饰如何触发血红素连接和微环境中的深刻结构变化并影响蛋白质功能提供了新的见解。