Yin Victor, Mian Safee H, Konermann Lars
Department of Chemistry and Department of Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada . Email:
Chem Sci. 2019 Jan 7;10(8):2349-2359. doi: 10.1039/c8sc03624a. eCollection 2019 Feb 28.
The peroxidase activity of cytochrome (cyt ) plays a key role during apoptosis. Peroxidase catalysis requires a vacant Fe coordination site, , cyt must undergo an activation process involving structural changes that rupture the native Met80-Fe contact. A common strategy for dissociating this bond is the conversion of Met80 to sulfoxide (MetO). It is widely believed that this MetO formation in itself is sufficient for cyt activation. This notion originates from studies on chloramine-T-treated cyt (CT-cyt ) which represents a standard model for the peroxidase activated state. CT-cyt is considered to be a "clean" species that has undergone selective MetO formation, without any other modifications. Using optical, chromatographic, and mass spectrometry techniques, the current work demonstrates that CT-induced activation of cyt is more complicated than previously thought. MetO formation alone results in only marginal peroxidase activity, because dissociation of the Met80-Fe bond triggers alternative ligation scenarios where Lys residues interfere with access to the heme. We found that CT causes not only MetO formation, but also carbonylation of several Lys residues. Carbonylation is associated with -1 Da mass shifts that have gone undetected in the CT-cyt literature. Proteoforms possessing both MetO and Lys carbonylation exhibit almost fourfold higher peroxidase activity than those with MetO alone. Carbonylation abrogates the capability of Lys to coordinate the heme, thereby freeing up the distal site as required for an active peroxidase. Previous studies on CT-cyt may have inadvertently examined carbonylated proteoforms, potentially misattributing effects of carbonylation to solely MetO formation.
细胞色素c(cyt c)的过氧化物酶活性在细胞凋亡过程中起着关键作用。过氧化物酶催化需要一个空的铁配位位点,因此,cyt c必须经历一个激活过程,该过程涉及结构变化,从而破坏天然的甲硫氨酸80-铁接触。解离这种键的常见策略是将甲硫氨酸80转化为亚砜(MetO)。人们普遍认为,这种MetO的形成本身就足以激活cyt c。这一观点源于对氯胺-T处理的cyt c(CT-cyt c)的研究,CT-cyt c代表过氧化物酶激活状态的标准模型。CT-cyt c被认为是一种“纯净”的物质,它经历了选择性的MetO形成,没有任何其他修饰。利用光学、色谱和质谱技术,目前的研究表明,CT诱导的cyt c激活比以前认为的更为复杂。仅MetO的形成仅导致边缘过氧化物酶活性,因为甲硫氨酸80-铁键的解离触发了替代的配位情况,其中赖氨酸残基会干扰对血红素的接近。我们发现,CT不仅会导致MetO的形成,还会导致几个赖氨酸残基的羰基化。羰基化与-1 Da的质量位移有关,这在CT-cyt c的文献中未被检测到。同时具有MetO和赖氨酸羰基化的蛋白变体表现出的过氧化物酶活性几乎是仅具有MetO的蛋白变体的四倍。羰基化消除了赖氨酸与血红素配位的能力,从而根据活性过氧化物酶的需要释放出远端位点。以前对CT-cyt c的研究可能无意中检测到了羰基化的蛋白变体,可能将羰基化的影响错误地归因于仅MetO的形成。