Suppr超能文献

相似文献

1
Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16888-93. doi: 10.1073/pnas.0804795105. Epub 2008 Oct 30.
2
From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes.
J Mol Biol. 2006 Aug 25;361(4):744-54. doi: 10.1016/j.jmb.2006.06.063. Epub 2006 Jul 12.
3
Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI.
J Mol Biol. 1999 Mar 5;286(4):1123-36. doi: 10.1006/jmbi.1998.2519.
4
Analysis of the LAGLIDADG interface of the monomeric homing endonuclease I-DmoI.
Nucleic Acids Res. 2004 Jun 9;32(10):3156-68. doi: 10.1093/nar/gkh618. Print 2004.
5
Design, activity, and structure of a highly specific artificial endonuclease.
Mol Cell. 2002 Oct;10(4):895-905. doi: 10.1016/s1097-2765(02)00690-1.
6
Key Players in I-DmoI Endonuclease Catalysis Revealed from Structure and Dynamics.
ACS Chem Biol. 2016 May 20;11(5):1401-7. doi: 10.1021/acschembio.5b00730. Epub 2016 Mar 8.
7
Mapping metal ions at the catalytic centres of two intron-encoded endonucleases.
EMBO J. 1997 Jun 2;16(11):3272-81. doi: 10.1093/emboj/16.11.3272.
8
Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences.
Nucleic Acids Res. 2008 Apr;36(7):2163-73. doi: 10.1093/nar/gkn059. Epub 2008 Feb 14.
9
Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold.
J Biol Chem. 2015 Jul 24;290(30):18534-44. doi: 10.1074/jbc.M115.658666. Epub 2015 Jun 4.
10
Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases.
Nature. 2008 Nov 6;456(7218):107-11. doi: 10.1038/nature07343.

引用本文的文献

1
Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?
Bioessays. 2019 Dec;41(12):e1900126. doi: 10.1002/bies.201900126. Epub 2019 Nov 6.
2
Structure and dynamics of mesophilic variants from the homing endonuclease I-DmoI.
J Comput Aided Mol Des. 2017 Dec;31(12):1063-1072. doi: 10.1007/s10822-017-0087-5. Epub 2017 Nov 25.
3
Structure of the I-SceI nuclease complexed with its dsDNA target and three catalytic metal ions.
Acta Crystallogr F Struct Biol Commun. 2016 Jun;72(Pt 6):473-9. doi: 10.1107/S2053230X16007512. Epub 2016 May 23.
4
The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease.
J Mol Biol. 2016 Jan 16;428(1):206-220. doi: 10.1016/j.jmb.2015.12.005. Epub 2015 Dec 15.
5
Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification.
J Biol Chem. 2015 Nov 27;290(48):28727-36. doi: 10.1074/jbc.M115.678342. Epub 2015 Sep 11.
6
Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold.
J Biol Chem. 2015 Jul 24;290(30):18534-44. doi: 10.1074/jbc.M115.658666. Epub 2015 Jun 4.
7
Fast and sensitive detection of indels induced by precise gene targeting.
Nucleic Acids Res. 2015 May 19;43(9):e59. doi: 10.1093/nar/gkv126. Epub 2015 Mar 9.
8
Visualizing phosphodiester-bond hydrolysis by an endonuclease.
Nat Struct Mol Biol. 2015 Jan;22(1):65-72. doi: 10.1038/nsmb.2932. Epub 2014 Dec 8.
9
Massively parallel determination and modeling of endonuclease substrate specificity.
Nucleic Acids Res. 2014 Dec 16;42(22):13839-52. doi: 10.1093/nar/gku1096. Epub 2014 Nov 11.
10
Non-specific protein-DNA interactions control I-CreI target binding and cleavage.
Nucleic Acids Res. 2012 Aug;40(14):6936-45. doi: 10.1093/nar/gks320. Epub 2012 Apr 11.

本文引用的文献

1
Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases.
Nature. 2008 Nov 6;456(7218):107-11. doi: 10.1038/nature07343.
3
Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences.
Nucleic Acids Res. 2008 Apr;36(7):2163-73. doi: 10.1093/nar/gkn059. Epub 2008 Feb 14.
4
Crystallization and preliminary X-ray diffraction analysis on the homing endonuclease I-Dmo-I in complex with its target DNA.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Dec 1;63(Pt 12):1017-20. doi: 10.1107/S1744309107049706. Epub 2007 Nov 21.
5
Generation and analysis of mesophilic variants of the thermostable archaeal I-DmoI homing endonuclease.
J Biol Chem. 2008 Feb 15;283(7):4364-74. doi: 10.1074/jbc.M706323200. Epub 2007 Nov 12.
6
Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases.
Nat Biotechnol. 2007 Jul;25(7):786-93. doi: 10.1038/nbt1317. Epub 2007 Jul 1.
7
An improved zinc-finger nuclease architecture for highly specific genome editing.
Nat Biotechnol. 2007 Jul;25(7):778-85. doi: 10.1038/nbt1319. Epub 2007 Jul 1.
9
Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy.
Curr Gene Ther. 2007 Feb;7(1):49-66. doi: 10.2174/156652307779940216.
10
A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences.
Nucleic Acids Res. 2006;34(22):e149. doi: 10.1093/nar/gkl720. Epub 2006 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验