Suppr超能文献

基因编辑能否定制设计缺失?缺失能定制吗?

Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?

机构信息

School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.

Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.

出版信息

Bioessays. 2019 Dec;41(12):e1900126. doi: 10.1002/bies.201900126. Epub 2019 Nov 6.

Abstract

Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.

摘要

基因组编辑与工程化核酸酶(GEENs)可引入特定的 DNA 双链断裂(DSB),并通过非同源末端连接(NHEJ)途径修复 DSB,最终在基因组中产生插入/缺失(indels)。有人询问基因编辑产生的 indels 的特征是否可以定制。对文献的回顾揭示了 NHEJ 途径的基因编辑技术如何影响基因编辑。该调查整合了大量文献,表明不同的 GEENs 和通过操纵关键 NHEJ 基因的表达,可以在一定程度上定制 indel 编辑的类型(插入、缺失和复杂)和大致长度。结构数据表明,GEENs 与 DNA 的结合可能会干扰 DNA 修复复合物关键成分的结合,有利于经典或替代 NHEJ。这些假设存在一些局限性,但如果得到验证,将使科学家能够更好地控制 indel 的组成,为基因编辑的基础科学和临床应用带来希望。另请在此处观看视频摘要:https://youtu.be/vTkJtUsLi3w。

相似文献

1
Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?
Bioessays. 2019 Dec;41(12):e1900126. doi: 10.1002/bies.201900126. Epub 2019 Nov 6.
3
Gene Editing With TALEN and CRISPR/Cas in Rice.
Prog Mol Biol Transl Sci. 2017;149:81-98. doi: 10.1016/bs.pmbts.2017.04.006. Epub 2017 May 24.
4
A history of genome editing in mammals.
Mamm Genome. 2017 Aug;28(7-8):237-246. doi: 10.1007/s00335-017-9699-2. Epub 2017 Jun 6.
6
Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR.
Methods Mol Biol. 2022;2495:29-46. doi: 10.1007/978-1-0716-2301-5_2.
8
TALEN-Mediated Mutagenesis and Genome Editing.
Methods Mol Biol. 2016;1451:17-30. doi: 10.1007/978-1-4939-3771-4_2.
9
The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
DNA Repair (Amst). 2016 Aug;44:6-16. doi: 10.1016/j.dnarep.2016.05.001. Epub 2016 May 12.

引用本文的文献

1
Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models.
Front Genet. 2021 Apr 20;12:615491. doi: 10.3389/fgene.2021.615491. eCollection 2021.

本文引用的文献

1
The Gene Sculpt Suite: a set of tools for genome editing.
Nucleic Acids Res. 2019 Jul 2;47(W1):W175-W182. doi: 10.1093/nar/gkz405.
2
Machine learning finds Cas9-edited genotypes.
Nat Biomed Eng. 2018 Dec;2(12):892-893. doi: 10.1038/s41551-018-0327-6.
3
Author Correction: Predictable and precise template-free CRISPR editing of pathogenic variants.
Nature. 2019 Mar;567(7746):E1-E2. doi: 10.1038/s41586-019-0938-4.
5
Orthogonal Cas9-Cas9 chimeras provide a versatile platform for genome editing.
Nat Commun. 2018 Nov 19;9(1):4856. doi: 10.1038/s41467-018-07310-x.
6
Predictable and precise template-free CRISPR editing of pathogenic variants.
Nature. 2018 Nov;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub 2018 Nov 7.
7
Robust activation of microhomology-mediated end joining for precision gene editing applications.
PLoS Genet. 2018 Sep 12;14(9):e1007652. doi: 10.1371/journal.pgen.1007652. eCollection 2018 Sep.
8
Dynamics of Indel Profiles Induced by Various CRISPR/Cas9 Delivery Methods.
Prog Mol Biol Transl Sci. 2017;152:49-67. doi: 10.1016/bs.pmbts.2017.09.003. Epub 2017 Nov 6.
9
Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):728-733. doi: 10.1073/pnas.1612204114. Epub 2017 Jan 5.
10
Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease.
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):14988-14993. doi: 10.1073/pnas.1616343114. Epub 2016 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验