Suppr超能文献

从结构和动力学揭示I-DmoI核酸内切酶催化中的关键因素

Key Players in I-DmoI Endonuclease Catalysis Revealed from Structure and Dynamics.

作者信息

Molina Rafael, Besker Neva, Marcaida Maria Jose, Montoya Guillermo, Prieto Jesús, D'Abramo Marco

机构信息

Structural Biology and Biocomputing Programme, Macromolecular Crystallography Group, Spanish National Cancer Research Centre (CNIO) , c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain.

CINECA, SuperComputing Applications and Innovations , via dei Tizii 6, 00185 Rome, Italy.

出版信息

ACS Chem Biol. 2016 May 20;11(5):1401-7. doi: 10.1021/acschembio.5b00730. Epub 2016 Mar 8.

Abstract

Homing endonucleases, such as I-DmoI, specifically recognize and cleave long DNA target sequences (∼20 bp) and are potentially powerful tools for genome manipulation. However, inefficient and off-target DNA cleavage seriously limits specific editing in complex genomes. One approach to overcome these limitations is to unambiguously identify the key structural players involved in catalysis. Here, we report the E117A I-DmoI mutant crystal structure at 2.2 Å resolution that, together with the wt and Q42A/K120M constructs, is combined with computational approaches to shed light on protein cleavage activity. The cleavage mechanism was related both to key structural effects, such as the position of water molecules and ions participating in the cleavage reaction, and to dynamical effects related to protein behavior. In particular, we found that the protein perturbation pattern significantly changes between cleaved and noncleaved DNA strands when the ions and water molecules are correctly positioned for the nucleophilic attack that initiates the cleavage reaction, in line with experimental enzymatic activity. The proposed approach paves the way for an effective, general, and reliable procedure to analyze the enzymatic activity of endonucleases from a very limited data set, i.e., structure and dynamics.

摘要

归巢内切酶,如I-DmoI,能特异性识别并切割长DNA靶序列(约20个碱基对),是基因组操作中潜在的强大工具。然而,低效和脱靶的DNA切割严重限制了复杂基因组中的特异性编辑。克服这些限制的一种方法是明确识别参与催化的关键结构成分。在此,我们报道了分辨率为2.2 Å的E117A I-DmoI突变体晶体结构,该结构与野生型和Q42A/K120M构建体一起,结合计算方法来阐明蛋白质的切割活性。切割机制既与关键结构效应有关,如参与切割反应的水分子和离子的位置,也与蛋白质行为相关的动力学效应有关。特别是,我们发现当离子和水分子正确定位以引发切割反应的亲核攻击时,切割和未切割的DNA链之间的蛋白质扰动模式会显著变化,这与实验酶活性一致。所提出的方法为从非常有限的数据集中分析内切酶的酶活性,即结构和动力学,开辟了一条有效、通用且可靠的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验