文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用代谢网络预测微生物之间的交叉喂养和竞争相互作用。

Using metabolic networks to predict cross-feeding and competition interactions between microorganisms.

机构信息

Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile.

Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.

出版信息

Microbiol Spectr. 2024 May 2;12(5):e0228723. doi: 10.1128/spectrum.02287-23. Epub 2024 Mar 20.


DOI:10.1128/spectrum.02287-23
PMID:38506512
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11064492/
Abstract

Understanding the interactions between microorganisms and their impact on bacterial behavior at the community level is a key research topic in microbiology. Different methods, relying on experimental or mathematical approaches based on the diverse properties of bacteria, are currently employed to study these interactions. Recently, the use of metabolic networks to understand the interactions between bacterial pairs has increased, highlighting the relevance of this approach in characterizing bacteria. In this study, we leverage the representation of bacteria through their metabolic networks to build a predictive model aimed at reducing the number of experimental assays required for designing bacterial consortia with specific behaviors. Our novel method for predicting cross-feeding or competition interactions between pairs of microorganisms utilizes metabolic network features. Machine learning classifiers are employed to determine the type of interaction from automatically reconstructed metabolic networks. Several algorithms were assessed and selected based on comprehensive testing and careful separation of manually compiled data sets obtained from literature sources. We used different classification algorithms, including K Nearest Neighbors, XGBoost, Support Vector Machine, and Random Forest, tested different parameter values, and implemented several data curation approaches to reduce the biological bias associated with our data set, ultimately achieving an accuracy of over 0.9. Our method holds substantial potential to advance the understanding of community behavior and contribute to the development of more effective approaches for consortia design.IMPORTANCEUnderstanding bacterial interactions at the community level is critical for microbiology, and leveraging metabolic networks presents an efficient and effective approach. The introduction of this novel method for predicting interactions through machine learning classifiers has the potential to advance the field by reducing the number of experimental assays required and contributing to the development of more effective bacterial consortia.

摘要

理解微生物之间的相互作用及其对群落水平细菌行为的影响是微生物学的一个关键研究课题。目前,有不同的方法,这些方法依赖于基于细菌不同特性的实验或数学方法,用于研究这些相互作用。最近,利用代谢网络来理解细菌对的相互作用的方法越来越多,这突出了这种方法在描述细菌方面的相关性。在这项研究中,我们利用细菌的代谢网络来构建一个预测模型,旨在减少设计具有特定行为的细菌群落所需的实验次数。我们预测微生物对之间的交叉喂养或竞争相互作用的新方法利用了代谢网络的特征。机器学习分类器用于从自动重建的代谢网络中确定相互作用的类型。我们评估和选择了几种算法,这些算法基于全面的测试和从文献来源手动编译的数据集的仔细分离。我们使用了不同的分类算法,包括 K 最近邻、XGBoost、支持向量机和随机森林,测试了不同的参数值,并实施了几种数据管理方法来减少与数据集相关的生物学偏差,最终实现了超过 0.9 的准确性。我们的方法具有很大的潜力,可以促进对群落行为的理解,并有助于开发更有效的群落设计方法。

重要性
理解群落水平的细菌相互作用对微生物学至关重要,而利用代谢网络则提供了一种高效有效的方法。通过机器学习分类器预测相互作用的这种新方法的引入,有可能通过减少所需的实验次数并有助于开发更有效的细菌群落来推动该领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/85fd73d04414/spectrum.02287-23.f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/05d5e80d77da/spectrum.02287-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/5592c7b8e667/spectrum.02287-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/1b6ee28d3941/spectrum.02287-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/bf4b58c42d67/spectrum.02287-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/d51a0f211323/spectrum.02287-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/85fd73d04414/spectrum.02287-23.f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/05d5e80d77da/spectrum.02287-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/5592c7b8e667/spectrum.02287-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/1b6ee28d3941/spectrum.02287-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/bf4b58c42d67/spectrum.02287-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/d51a0f211323/spectrum.02287-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a583/11064492/85fd73d04414/spectrum.02287-23.f006.jpg

相似文献

[1]
Using metabolic networks to predict cross-feeding and competition interactions between microorganisms.

Microbiol Spectr. 2024-5-2

[2]
Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.

PLoS Comput Biol. 2016-4-19

[3]
Network-based metabolic analysis and microbial community modeling.

Curr Opin Microbiol. 2016-6

[4]
Model-based and phylogenetically adjusted quantification of metabolic interaction between microbial species.

PLoS Comput Biol. 2020-10

[5]
Machine-learning techniques for the prediction of protein-protein interactions.

J Biosci. 2019-9

[6]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

[7]
Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms.

Molecules. 2023-9-23

[8]
MPLasso: Inferring microbial association networks using prior microbial knowledge.

PLoS Comput Biol. 2017-12-27

[9]
Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome.

PLoS Comput Biol. 2018-4-18

[10]
Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.

Brief Bioinform. 2021-9-2

引用本文的文献

[1]
Sustainable Innovations in Food Microbiology: Fermentation, Biocontrol, and Functional Foods.

Foods. 2025-6-30

[2]
A machine-learning approach for predicting butyrate production by microbial consortia using metabolic network information.

PeerJ. 2025-5-28

[3]
Specific Bacterial Co-abundance Groups Are Associated With Inflammatory Status in Patients With Ulcerative Colitis.

J Crohns Colitis. 2025-1-11

本文引用的文献

[1]
Modeling approaches for probing cross-feeding interactions in the human gut microbiome.

Comput Struct Biotechnol J. 2021-12-8

[2]
Author Correction: DOME: recommendations for supervised machine learning validation in biology.

Nat Methods. 2021-11

[3]
Design of synthetic human gut microbiome assembly and butyrate production.

Nat Commun. 2021-5-31

[4]
Ecology-guided prediction of cross-feeding interactions in the human gut microbiome.

Nat Commun. 2021-2-26

[5]
NetCoMi: network construction and comparison for microbiome data in R.

Brief Bioinform. 2021-7-20

[6]
Modeling microbial cross-feeding at intermediate scale portrays community dynamics and species coexistence.

PLoS Comput Biol. 2020-8-18

[7]
MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota.

mSystems. 2020-1-21

[8]
A workflow for generating multi-strain genome-scale metabolic models of prokaryotes.

Nat Protoc. 2019-12-20

[9]
OrthoFinder: phylogenetic orthology inference for comparative genomics.

Genome Biol. 2019-11-14

[10]
Microbial consortia including methanotrophs: some benefits of living together.

J Microbiol. 2019-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索