Suppr超能文献

犬呼吸道冠状病毒(CRCoV)感染期间犬气管上皮细胞中细胞因子和趋化因子编码mRNA的定量分析及纤毛功能评估。

Quantification of mRNA encoding cytokines and chemokines and assessment of ciliary function in canine tracheal epithelium during infection with canine respiratory coronavirus (CRCoV).

作者信息

Priestnall Simon L, Mitchell Judy A, Brooks Harriet W, Brownlie Joe, Erles Kerstin

机构信息

Department of Pathology and Infectious Diseases, The Royal Veterinary College, Hatfield, Hertfordshire, UK.

出版信息

Vet Immunol Immunopathol. 2009 Jan 15;127(1-2):38-46. doi: 10.1016/j.vetimm.2008.09.017. Epub 2008 Sep 27.

Abstract

One of the first lines of defence against viral infection is the innate immune response and the induction of antiviral type I interferons (IFNs). However some viruses, including the group 2 coronaviruses, have evolved mechanisms to overcome or circumvent the host antiviral response. Canine respiratory coronavirus (CRCoV) has previously been shown to have a widespread international presence and has been implicated in outbreaks of canine infectious respiratory disease (CIRD). This study aimed to quantify pro-inflammatory cytokine mRNAs following infection of canine air-interface tracheal cultures with CRCoV. Within this system, immunohistochemistry identified ciliated epithelial and goblet cells as positive for CRCoV, identical to naturally infected cases, thus the data obtained would be fully transferable to the situation in vivo. An assay of ciliary function was used to assess potential effects of CRCoV on the mucociliary system. CRCoV was shown to reduce the mRNA levels of the pro-inflammatory cytokines TNF-alpha and IL-6 and the chemokine IL-8 during the 72 h post-inoculation. The mechanism for this is unknown, however the suppression of a key antiviral strategy during a period of physiologic and immunological stress, such as on entry to a kennel, could potentially predispose a dog to further pathogenic challenge and the development of respiratory disease.

摘要

抵御病毒感染的第一道防线之一是先天免疫反应以及抗病毒I型干扰素(IFN)的诱导。然而,包括2型冠状病毒在内的一些病毒已经进化出克服或规避宿主抗病毒反应的机制。犬呼吸道冠状病毒(CRCoV)此前已被证明在国际上广泛存在,并与犬传染性呼吸道疾病(CIRD)的暴发有关。本研究旨在量化CRCoV感染犬气道界面气管培养物后促炎细胞因子mRNA的水平。在该系统中,免疫组织化学鉴定出纤毛上皮细胞和杯状细胞为CRCoV阳性,与自然感染病例相同,因此获得的数据将完全适用于体内情况。使用纤毛功能测定法来评估CRCoV对黏液纤毛系统的潜在影响。结果显示,在接种后72小时内,CRCoV可降低促炎细胞因子TNF-α和IL-6以及趋化因子IL-8的mRNA水平。其机制尚不清楚,然而,在生理和免疫应激期间,如进入犬舍时,抑制一种关键的抗病毒策略可能会使犬更容易受到进一步的病原体攻击并引发呼吸道疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5744/7112596/47426bb30204/gr1.jpg

相似文献

2
Serological prevalence of canine respiratory coronavirus.
Vet Microbiol. 2006 Jun 15;115(1-3):43-53. doi: 10.1016/j.vetmic.2006.02.008. Epub 2006 Mar 23.
4
Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1.
Virus Res. 2017 Jun 2;237:7-13. doi: 10.1016/j.virusres.2017.05.006. Epub 2017 May 13.
5
Tropism and pathological findings associated with canine respiratory coronavirus (CRCoV).
Vet Microbiol. 2013 Mar 23;162(2-4):582-594. doi: 10.1016/j.vetmic.2012.11.025. Epub 2012 Nov 29.
6
European surveillance of emerging pathogens associated with canine infectious respiratory disease.
Vet Microbiol. 2017 Dec;212:31-38. doi: 10.1016/j.vetmic.2017.10.019. Epub 2017 Oct 28.
7
Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy.
Vet Microbiol. 2007 Apr 15;121(3-4):225-30. doi: 10.1016/j.vetmic.2006.12.001. Epub 2006 Dec 17.
8
Isolation and sequence analysis of canine respiratory coronavirus.
Virus Res. 2007 Mar;124(1-2):78-87. doi: 10.1016/j.virusres.2006.10.004. Epub 2006 Nov 7.
9
Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs.
Infect Genet Evol. 2020 Aug;82:104290. doi: 10.1016/j.meegid.2020.104290. Epub 2020 Mar 20.

引用本文的文献

1
Coronavirus and the Cytoskeleton of Virus-Infected Cells.
Subcell Biochem. 2023;106:333-364. doi: 10.1007/978-3-031-40086-5_12.
3
Clinical and molecular aspects of veterinary coronaviruses.
Virus Res. 2021 May;297:198382. doi: 10.1016/j.virusres.2021.198382. Epub 2021 Mar 8.
4
The role of goblet cells in viral pathogenesis.
FEBS J. 2021 Dec;288(24):7060-7072. doi: 10.1111/febs.15731. Epub 2021 Feb 9.
6
Cytoskeleton-a crucial key in host cell for coronavirus infection.
J Mol Cell Biol. 2020 Jul 1;12(12):968-979. doi: 10.1093/jmcb/mjaa042.
8
The challenges in developing effective canine infectious respiratory disease vaccines.
J Pharm Pharmacol. 2015 Mar;67(3):372-81. doi: 10.1111/jphp.12380. Epub 2015 Mar 3.
9
Detection of canine pneumovirus in dogs with canine infectious respiratory disease.
J Clin Microbiol. 2013 Dec;51(12):4112-9. doi: 10.1128/JCM.02312-13. Epub 2013 Oct 2.
10
Tropism and pathological findings associated with canine respiratory coronavirus (CRCoV).
Vet Microbiol. 2013 Mar 23;162(2-4):582-594. doi: 10.1016/j.vetmic.2012.11.025. Epub 2012 Nov 29.

本文引用的文献

3
Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition.
Virology. 2007 Apr 25;361(1):18-26. doi: 10.1016/j.virol.2007.01.020. Epub 2007 Feb 21.
4
Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy.
Vet Microbiol. 2007 Apr 15;121(3-4):225-30. doi: 10.1016/j.vetmic.2006.12.001. Epub 2006 Dec 17.
5
Isolation and sequence analysis of canine respiratory coronavirus.
Virus Res. 2007 Mar;124(1-2):78-87. doi: 10.1016/j.virusres.2006.10.004. Epub 2006 Nov 7.
7
Serological prevalence of canine respiratory coronavirus.
Vet Microbiol. 2006 Jun 15;115(1-3):43-53. doi: 10.1016/j.vetmic.2006.02.008. Epub 2006 Mar 23.
9
The prevalence of a group 2 coronavirus in dogs in Japan.
J Vet Med Sci. 2006 Jan;68(1):21-5. doi: 10.1292/jvms.68.21.
10
The interferon response circuit: induction and suppression by pathogenic viruses.
Virology. 2006 Jan 5;344(1):119-30. doi: 10.1016/j.virol.2005.09.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验