Suppr超能文献

构巢曲霉曲霉霉素基因簇的鉴定与表征

Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans.

作者信息

Szewczyk Edyta, Chiang Yi-Ming, Oakley C Elizabeth, Davidson Ashley D, Wang Clay C C, Oakley Berl R

机构信息

Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA.

出版信息

Appl Environ Microbiol. 2008 Dec;74(24):7607-12. doi: 10.1128/AEM.01743-08. Epub 2008 Oct 31.

Abstract

The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.

摘要

曲霉基因组测序表明,大量次生代谢途径的产物尚未被鉴定出来。这可能是因为许多次生代谢物基因簇在正常实验室培养条件下不表达。因此,发现能够诱导这些基因表达的条件或调控因子很重要。我们报告称,在构巢曲霉中,编码小泛素样蛋白SUMO的基因sumO的缺失,导致次生代谢物曲霉霉素的产量大幅增加,而奥斯汀醇/脱氢奥斯汀醇和柄曲霉素的合成减少。sumO缺失突变体中曲霉霉素的过量产生使我们能够通过一系列靶向缺失,鉴定出曲霉霉素合成所需的基因。曲霉霉素生物合成基因成簇存在,包括编码迭代型I聚酮合酶、水解酶和单加氧酶的基因。这些基因的鉴定使我们能够提出曲霉霉素的生物合成途径。

相似文献

1
Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans.
Appl Environ Microbiol. 2008 Dec;74(24):7607-12. doi: 10.1128/AEM.01743-08. Epub 2008 Oct 31.
3
A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans.
FEMS Microbiol Lett. 2011 Aug;321(2):157-66. doi: 10.1111/j.1574-6968.2011.02327.x. Epub 2011 Jun 27.
4
Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans.
PLoS One. 2012;7(4):e35450. doi: 10.1371/journal.pone.0035450. Epub 2012 Apr 10.
7
Characterization of the Aspergillus nidulans monodictyphenone gene cluster.
Appl Environ Microbiol. 2010 Apr;76(7):2067-74. doi: 10.1128/AEM.02187-09. Epub 2010 Feb 5.
8
Construction of an expression platform for fungal secondary metabolite biosynthesis in Penicillium crustosum.
Appl Microbiol Biotechnol. 2024 Jul 24;108(1):427. doi: 10.1007/s00253-024-13259-3.
10
Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans.
J Am Chem Soc. 2012 May 16;134(19):8212-21. doi: 10.1021/ja3016395. Epub 2012 May 1.

引用本文的文献

1
Biosynthesis of the Paecilomyces marquandii conidial pigment saintopin.
Fungal Biol Biotechnol. 2025 Jun 5;12(1):11. doi: 10.1186/s40694-025-00199-4.
2
Section-level genome sequencing and comparative genomics of sections and .
Stud Mycol. 2025 Jun;111:101-114. doi: 10.3114/sim.2025.111.03. Epub 2025 Mar 5.
3
Discovery of Noncanonical Iron and 2-Oxoglutarate Dependent Enzymes Involved in C-C and C-N Bond Formation in Biosynthetic Pathways.
ACS Bio Med Chem Au. 2025 Mar 10;5(2):238-261. doi: 10.1021/acsbiomedchemau.5c00001. eCollection 2025 Apr 16.
4
Resolving the fungal velvet domain architecture by VelB.
mBio. 2025 May 14;16(5):e0026125. doi: 10.1128/mbio.00261-25. Epub 2025 Mar 31.
5
Comparative genomics of and section .
Curr Res Microb Sci. 2025 Jan 16;8:100342. doi: 10.1016/j.crmicr.2025.100342. eCollection 2025.
6
SUMO-targeted Ubiquitin Ligases as crucial mediators of protein homeostasis in Candida glabrata.
PLoS Pathog. 2024 Dec 6;20(12):e1012742. doi: 10.1371/journal.ppat.1012742. eCollection 2024 Dec.
7
Molecular regulation of fungal secondary metabolism.
World J Microbiol Biotechnol. 2023 May 20;39(8):204. doi: 10.1007/s11274-023-03649-6.
9
The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases.
Chembiochem. 2023 Feb 1;24(3):e202200649. doi: 10.1002/cbic.202200649. Epub 2022 Dec 28.
10
Halogenase-Targeted Genome Mining Leads to the Discovery of (±) Pestalachlorides A1a, A2a, and Their Atropisomers.
Antibiotics (Basel). 2022 Sep 25;11(10):1304. doi: 10.3390/antibiotics11101304.

本文引用的文献

2
Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging.
Fungal Genet Biol. 2008 May;45(5):728-37. doi: 10.1016/j.fgb.2007.12.009. Epub 2008 Jan 11.
3
Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway.
J Biol Chem. 2007 Aug 31;282(35):25717-25. doi: 10.1074/jbc.M703437200. Epub 2007 Jul 12.
4
Fusion PCR and gene targeting in Aspergillus nidulans.
Nat Protoc. 2006;1(6):3111-20. doi: 10.1038/nprot.2006.405.
6
Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining.
Org Biomol Chem. 2006 Sep 21;4(18):3517-20. doi: 10.1039/b607011f. Epub 2006 Aug 10.
7
Secondary metabolic gene cluster silencing in Aspergillus nidulans.
Mol Microbiol. 2006 Sep;61(6):1636-45. doi: 10.1111/j.1365-2958.2006.05330.x.
8
Genomic mining for Aspergillus natural products.
Chem Biol. 2006 Jan;13(1):31-7. doi: 10.1016/j.chembiol.2005.10.008.
9
A versatile and efficient gene-targeting system for Aspergillus nidulans.
Genetics. 2006 Mar;172(3):1557-66. doi: 10.1534/genetics.105.052563. Epub 2005 Dec 30.
10
Genome sequencing and analysis of Aspergillus oryzae.
Nature. 2005 Dec 22;438(7071):1157-61. doi: 10.1038/nature04300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验