Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, USA.
J Am Chem Soc. 2009 Mar 4;131(8):2965-70. doi: 10.1021/ja8088185.
The genome sequencing of Aspergillus species including A. nidulans reveals that the products of many of the secondary metabolism pathways in these fungi have not been elucidated. Our examination of the 27 polyketide synthases (PKS) in A. nidulans revealed that one highly reduced PKS (HR-PKS, AN1034.3) and one nonreduced PKS (NR-PKS, AN1036.3) are located next to each other in the genome. Since no known A. nidulans secondary metabolites could be produced by two PKS enzymes, we hypothesized that this cryptic gene cluster produces an unknown natural product. Indeed after numerous attempts we found that the products from this cluster could not be detected under normal laboratory culture conditions in wild type strains. Closer examination of the gene cluster revealed a gene with high homology to a citrinin biosynthesis transcriptional activator (CtnR, 32% identity/47% similarity), a fungal transcription activator located next to the two PKSs. We replaced the promoter of the transcription activator with the inducible alcA promoter, which enabled the production of a novel polyketide that we have named asperfuranone. A series of gene deletions has allowed us to confirm that the two PKSs together with five additional genes comprise the asperfuranone biosynthetic pathway and leads us to propose a biosynthetic pathway for asperfuranone. Our results confirm and substantiate the potential to discover novel compounds even from a well-studied fungus by using a genomic mining approach.
曲霉属物种的基因组测序表明,这些真菌中许多次级代谢途径的产物尚未阐明。我们对 A. nidulans 中的 27 种聚酮合酶(PKS)进行了研究,发现一个高度还原的 PKS(HR-PKS,AN1034.3)和一个非还原的 PKS(NR-PKS,AN1036.3)在基因组中彼此相邻。由于没有已知的 A. nidulans 次生代谢产物可以由两种 PKS 酶产生,我们假设这个隐性基因簇产生一种未知的天然产物。事实上,经过多次尝试,我们发现这个基因簇的产物在野生型菌株的正常实验室培养条件下无法检测到。对基因簇的进一步研究发现,一个与桔霉素生物合成转录激活因子(CtnR,32%的同一性/47%的相似性)具有高度同源性的基因,一个位于两个 PKS 旁边的真菌转录激活因子。我们用可诱导的 alcA 启动子替换了转录激活因子的启动子,这使得一种新型聚酮化合物的产生成为可能,我们将其命名为 Asperfuranone。一系列基因缺失使我们能够确认,这两个 PKS 与另外五个基因一起构成了 Asperfuranone 的生物合成途径,并使我们提出了 Asperfuranone 的生物合成途径。我们的结果证实并证实了即使使用基因组挖掘方法,也可以从一种研究充分的真菌中发现新化合物的潜力。