Suppr超能文献

视觉字母识别的时空动态

The spatio-temporal dynamics of visual letter recognition.

作者信息

Fiset Daniel, Blais Caroline, Arguin Martin, Tadros Karine, Ethier-Majcher Catherine, Bub Daniel, Gosselin Frederic

机构信息

University of Victoria, Victoria, British Columbia, Canada.

出版信息

Cogn Neuropsychol. 2009 Feb;26(1):23-35. doi: 10.1080/02643290802421160.

Abstract

We applied the Bubbles technique to reveal directly the spatio-temporal features of uppercase Arial letter identification. We asked four normal readers to each identify 26,000 letters that were randomly sampled in space and time; afterwards, we performed multiple linear regressions on the participant's response accuracy and the space-time samples. We contend that each cluster of connected significant regression coefficients is a letter feature. To bridge the gap between the letter identification literature and this experiment, we also determined the relative importance of the features proposed in the letter identification literature. Results show clear modulations of the relative importance of the letter features of some letters across time, demonstrating that letter features are not always extracted simultaneously at constant speeds. Furthermore, of all the feature classes proposed in the literature, line terminations and horizontals appear to be the two most important for letter identification.

摘要

我们应用气泡技术直接揭示大写Arial字母识别的时空特征。我们让四名正常读者每人识别26000个在空间和时间上随机采样的字母;之后,我们对参与者的反应准确性和时空样本进行了多元线性回归。我们认为,每一组相连的显著回归系数都是一个字母特征。为了弥合字母识别文献与本实验之间的差距,我们还确定了字母识别文献中提出的特征的相对重要性。结果表明,某些字母的字母特征的相对重要性随时间有明显的调制,这表明字母特征并非总是以恒定速度同时提取。此外,在文献中提出的所有特征类别中,线条端点和水平线似乎是字母识别中最重要的两个特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验