Suppr超能文献

通过同时估计组织特性T1图和反转恢复乳腺磁共振图像的组间配准来改善实质分割。

Improving parenchyma segmentation by simultaneous estimation of tissue property T1 map and group-wise registration of inversion recovery MR breast images.

作者信息

Xing Ye, Xue Zhong, Englander Sarah, Schnall Mitchell, Shen Dinggang

机构信息

Dept of Bioengineering, University of Pennsylvania, PA 19104, USA.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):342-50. doi: 10.1007/978-3-540-85988-8_41.

Abstract

The parenchyma tissue in the breast has a strong relation with predictive biomarkers of breast cancer. To better segment parenchyma, we perform segmentation on estimated tissue property T1 map. To improve the estimation of tissue property (T1) which is the basis for parenchyma segmentation, we present an integrated algorithm for simultaneous T1 map estimation, T1 map based parenchyma segmentation and group-wise registration on series of inversion recovery magnetic resonance (MR) breast images. The advantage of using this integrated algorithm is that the simultaneous T1 map estimation (E-step) and group-wise registration (R-step) could benefit each other and jointly improve parenchyma segmentation. In particular, in E-step, T1 map based segmentation could help perform an edge-preserving smoothing on the tentatively estimated noisy T1 map, and could also help provide tissue probability maps to be robustly registered in R-step. Meanwhile, the improved estimation of T1 map could help segment parenchyma in a more accurate way. In R-step, for robust registration, the group-wise registration is performed on the tissue probability maps produced in E-step, rather than the original inversion recovery MR images, since tissue probability maps are the intrinsic tissue property which is invariant to the use of different imaging parameters. The better alignment of images achieved in R-step can help improve T1 map estimation and indirectly the T1 map based parenchyma segmentation. By iteratively performing E-step and R-step, we can simultaneously obtain better results for T1 map estimation, T1 map based segmentation, group-wise registration, and finally parenchyma segmentation.

摘要

乳腺实质组织与乳腺癌的预测生物标志物密切相关。为了更好地分割实质组织,我们对估计的组织特性T1图进行分割。为了改进作为实质组织分割基础的组织特性(T1)估计,我们提出了一种集成算法,用于在一系列反转恢复磁共振(MR)乳腺图像上同时进行T1图估计、基于T1图的实质组织分割和组间配准。使用这种集成算法的优点是,同时进行的T1图估计(E步)和组间配准(R步)可以相互受益,并共同改进实质组织分割。特别是在E步中,基于T1图的分割有助于对初步估计的有噪声的T1图进行保边平滑处理,还可以帮助提供组织概率图,以便在R步中进行稳健配准。同时,T1图的改进估计有助于更准确地分割实质组织。在R步中,为了进行稳健配准,组间配准是在E步中生成的组织概率图上进行的,而不是在原始的反转恢复MR图像上进行,因为组织概率图是内在的组织特性,对于不同成像参数的使用是不变的。在R步中实现的更好的图像对齐有助于改进T1图估计,并间接改进基于T1图的实质组织分割。通过迭代执行E步和R步,我们可以同时在T1图估计、基于T1图的分割、组间配准以及最终的实质组织分割方面获得更好的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验