Suppr超能文献

基于标记控制分水岭的对比增强乳腺磁共振图像中的恶性病变分割。

Malignant lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed.

机构信息

Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.

出版信息

Med Phys. 2009 Oct;36(10):4359-69. doi: 10.1118/1.3213514.

Abstract

Breast tumor volume measured on MRI has been used to assess response to neoadjuvant chemotherapy. However, accurate and reproducible delineation of breast lesions can be challenging, since the lesions may have complicated topological structures and heterogeneous intensity distributions. In this article, the authors present an advanced computerized method to semiautomatically segment tumor volumes on T1-weighted, contrast-enhanced breast MRI. The method starts with manual selection of a region of interest (ROI) that contains the lesion to be segmented in a single image, followed by automated separation of the lesion volume from its surrounding breast parenchyma by using a unique combination of the image processing techniques including Gaussian mixture modeling and a marker-controlled watershed transform. Explicitly, the Gaussian mixture modeling is applied to an intensity histogram of the pixels inside the ROI to distinguish the tumor class from other tissues. Based on the ROI and the intensity distribution of the tumor, internal and external markers are determined and the tumor contour is delineated using the marker-controlled watershed transform. To obtain the tumor volume, the segmented tumor in one slice is propagated to the adjacent slice to form an ROI in that slice. The marker-controlled watershed segmentation is then used again to obtain a tumor contour in the propagated slice. This procedure is terminated when there is no lesion in an adjacent slice. To reduce measurement variations possibly caused by the manual selection of the ROI, the segmentation result is refined based on an automatically determined ROI based on the segmented volume. The algorithm was applied to 13 patients with breast cancer, prospectively accrued prior to beginning neoadjuvant chemotherapy. Each patient had two MRI scans, a baseline MRI examination prior to commencing neoadjuvant chemotherapy and a 1 week follow-up after receiving the first dose of neoadjuvant chemotherapy. Blinded to the computer segmentation results, two experienced radiologists manually delineated all tumors independently. The computer results were then compared with the manually generated results using the volume overlap ratio, defined as the intersection of the computer- and radiologist-generated tumor volumes divided by the union of the two. The algorithm reached overall overlap ratios of 62.6% +/- 9.1% and 61.0% +/- 11.3% in comparison to the two manual segmentation results, respectively. The overall overlap ratio between the two radiologists' manual segmentations was 64.3% +/- 10.4%. Preliminary results suggest that the proposed algorithm is a promising method for assisting in tumor volume measurement in contrast-enhanced breast MRI.

摘要

磁共振成像(MRI)上测量的乳腺肿瘤体积已被用于评估新辅助化疗的疗效。然而,由于病变可能具有复杂的拓扑结构和不均匀的强度分布,因此准确且可重复地勾画乳腺病变具有一定的挑战性。在本文中,作者提出了一种先进的计算机方法,用于半自动分割 T1 加权对比增强乳腺 MRI 上的肿瘤体积。该方法首先手动选择包含要分割的病变的感兴趣区域(ROI),然后通过使用包括高斯混合建模和标记控制分水岭变换在内的独特图像处理技术组合,自动将病变体积与周围乳腺实质分离。具体而言,高斯混合建模应用于 ROI 内像素的强度直方图,以区分肿瘤类别与其他组织。基于 ROI 和肿瘤的强度分布,确定内部和外部标记,并使用标记控制分水岭变换描绘肿瘤轮廓。为了获得肿瘤体积,将一个切片中的分割肿瘤传播到相邻切片中,以在该切片中形成 ROI。然后再次使用标记控制分水岭分割在传播的切片中获得肿瘤轮廓。当相邻切片中没有病变时,该过程结束。为了减少可能由 ROI 的手动选择引起的测量变化,根据基于分割体积的自动确定的 ROI 对分割结果进行细化。该算法应用于 13 例乳腺癌患者,在开始新辅助化疗前前瞻性地进行 MRI 检查。每位患者均进行两次 MRI 扫描,在开始新辅助化疗前进行基线 MRI 检查,在接受新辅助化疗第一剂后 1 周进行随访。两名经验丰富的放射科医生对所有肿瘤进行独立手动勾画,对计算机分割结果进行盲法评估。然后使用体积重叠比将计算机结果与手动生成的结果进行比较,定义为计算机和放射科医生生成的肿瘤体积的交集除以两者的并集。与两名放射科医生的手动分割结果相比,该算法的总体重叠率分别为 62.6% +/- 9.1%和 61.0% +/- 11.3%。两名放射科医生手动分割的总体重叠率为 64.3% +/- 10.4%。初步结果表明,该算法是一种很有前途的方法,可用于协助对比增强乳腺 MRI 中的肿瘤体积测量。

相似文献

9
Robust segmentation of mass-lesions in contrast-enhanced dynamic breast MR images.
J Magn Reson Imaging. 2010 Jul;32(1):110-9. doi: 10.1002/jmri.22206.
10
Semiautomatic segmentation of liver metastases on volumetric CT images.
Med Phys. 2015 Nov;42(11):6283-93. doi: 10.1118/1.4932365.

引用本文的文献

1
Using Marker-Controlled Watershed Transform to Detect Baker's Cyst in Magnetic Resonance Imaging Images: A Pilot Study.
J Med Signals Sens. 2021 Dec 28;12(1):84-89. doi: 10.4103/jmss.JMSS_49_20. eCollection 2022 Jan-Mar.
2
Levels Propagation Approach to Image Segmentation: Application to Breast MR Images.
J Digit Imaging. 2019 Jun;32(3):433-449. doi: 10.1007/s10278-018-00171-2.
3
Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors with Dynamic Contrast-Enhanced Magnetic Resonance Imaging.
Contrast Media Mol Imaging. 2018 Oct 24;2018:5308517. doi: 10.1155/2018/5308517. eCollection 2018.
4
Lymph node segmentation by dynamic programming and active contours.
Med Phys. 2018 May;45(5):2054-2062. doi: 10.1002/mp.12844. Epub 2018 Apr 1.
9
Marker-controlled watershed for lesion segmentation in mammograms.
J Digit Imaging. 2011 Oct;24(5):754-63. doi: 10.1007/s10278-011-9365-2.

本文引用的文献

1
Morphological grayscale reconstruction in image analysis: applications and efficient algorithms.
IEEE Trans Image Process. 1993;2(2):176-201. doi: 10.1109/83.217222.
2
Cancer statistics, 2008.
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
3
4
Hybrid image segmentation using watersheds and fast region merging.
IEEE Trans Image Process. 1998;7(12):1684-99. doi: 10.1109/83.730380.
5
Partial volume tissue classification of multichannel magnetic resonance images-a mixel model.
IEEE Trans Med Imaging. 1991;10(3):395-407. doi: 10.1109/42.97590.
6
Improved dynamic-programming-based algorithms for segmentation of masses in mammograms.
Med Phys. 2007 Nov;34(11):4256-69. doi: 10.1118/1.2791034.
8
A dual-stage method for lesion segmentation on digital mammograms.
Med Phys. 2007 Nov;34(11):4180-93. doi: 10.1118/1.2790837.
9
Diagnostic breast MR imaging: current status and future directions.
Radiol Clin North Am. 2007 Sep;45(5):863-80, vii. doi: 10.1016/j.rcl.2007.07.002.
10
[18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy.
Eur J Nucl Med Mol Imaging. 2007 Dec;34(12):1915-24. doi: 10.1007/s00259-007-0459-5. Epub 2007 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验