Parker Micaela S, Mock Thomas, Armbrust E Virginia
School of Oceanography, University of Washington, Seattle, Washington 98195, USA.
Annu Rev Genet. 2008;42:619-45. doi: 10.1146/annurev.genet.42.110807.091417.
Marine eukaryotic photosynthesis is dominated by a diverse group of unicellular organisms collectively called microalgae. Microalgae include cells derived from a primary endosymbiotic event (similar to land plants) and cells derived from subsequent secondary and/or tertiary endosymbiotic events. These latter cells are chimeras of several genomes and dominate primary production in the marine environment. Two consequences of multiple endosymbiotic events include complex targeting mechanisms to allow nuclear-encoded proteins to be imported into the plastid and coordination of enzymes, potentially from disparate originator cells, to form complete metabolic pathways. In this review, we discuss the forces that shaped the genomes of marine microalgae and then discuss some of the metabolic consequences of such a complex evolutionary history. We focus our metabolic discussion on carbon, nitrogen, and iron. We then discuss biomineralization and new evidence for programmed cell death in microalgae. We conclude with a short summary on advances in genetic manipulation of microalgae and thoughts on the future directions of marine algal genomics.
海洋真核生物光合作用由统称为微藻的多种单细胞生物主导。微藻包括源自一次内共生事件(类似于陆地植物)的细胞,以及源自后续二次和/或三次内共生事件的细胞。后一类细胞是多个基因组的嵌合体,在海洋环境中主导初级生产。多次内共生事件的两个后果包括复杂的靶向机制,以使核编码蛋白能够导入质体,以及协调可能来自不同起源细胞的酶,以形成完整的代谢途径。在本综述中,我们讨论了塑造海洋微藻基因组的力量,然后讨论了这种复杂进化历史的一些代谢后果。我们将代谢讨论重点放在碳、氮和铁上。然后我们讨论生物矿化以及微藻中程序性细胞死亡的新证据。我们最后简要总结了微藻基因操作的进展以及对海洋藻类基因组学未来方向的思考。