Lelandais Gaëlle, Scheiber Ivo, Paz-Yepes Javier, Lozano Jean-Claude, Botebol Hugo, Pilátová Jana, Žárský Vojtěch, Léger Thibaut, Blaiseau Pierre-Louis, Bowler Chris, Bouget François-Yves, Camadro Jean-Michel, Sutak Robert, Lesuisse Emmanuel
CNRS, Institut Jacques Monod, Université Paris Diderot-Paris 7, F-75013, Paris, France.
Department of Parasitology, Faculty of Science, Charles University in Prague, 12844, Prague, Czech Republic.
BMC Genomics. 2016 May 3;17:319. doi: 10.1186/s12864-016-2666-6.
Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii.
We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation.
The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.
铁生物利用率低是海洋表层水的一个共同特征,因此微藻进化出了优化铁吸收和代谢的原始策略。海洋微微型真核绿藻莱茵衣藻是研究绿藻谱系适应海洋环境的生理和遗传方面的一个非常好的模型:它有一个非常紧凑的基因组,易于在实验室条件下培养,并且可以通过高效的同源重组进行基因操作。在本研究中,我们旨在通过结合遗传学和生理学工具来表征莱茵衣藻中铁同化的机制。具体而言,我们希望识别并功能表征在细胞暴露于铁缺乏和昼夜循环后呈现紧密协调的时间表达模式的基因群,并突出莱茵衣藻与淡水模式藻莱茵衣藻相比铁代谢的独特特征。
我们使用RNA测序来研究莱茵衣藻对铁限制的转录反应,发现莱茵衣藻中大多数参与铁吸收和代谢的基因受昼夜循环调节,而与铁状态无关。莱茵衣藻缺乏还原性铁吸收系统的经典成分,也没有明显的铁调节子。铁吸收似乎不依赖于铜,但受锌调节。相反,铁缺乏导致许多编码含锌调节因子的基因转录激活。铁吸收可能由一个ZIP家族蛋白(Ot-Irt1)和一个含有重复Fea1结构域的新的Fea1相关蛋白(Ot-Fea1)介导。细胞对铁限制的适应涉及一种与昼夜循环紧密协调的铁节约反应,以优化细胞功能并使这些功能与由铁蛋白精心安排的铁的昼夜重新分布同步,以及一种基于诱导硫氧还蛋白样蛋白、过氧化物酶和tesmin样金属硫蛋白而非抗坏血酸的应激反应。我们简要研究了铁缺乏导致的代谢重塑。
莱茵衣藻中铁吸收和利用的机制与莱茵衣藻中描述的机制有根本不同。我们提出将该物种作为研究海洋微藻铁代谢的新模型。