Igashira-Kamiyama Asako, Tamai Toshihiro, Kawamoto Tatsuya, Konno Takumi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
Dalton Trans. 2008 Nov 28(44):6305-10. doi: 10.1039/b809265f. Epub 2008 Oct 6.
The reaction of [Ni(aet)2] with [CoCl2(R,R-chxn)2]+ (aet = 2-aminoethanethiolate, R,R-chxn = 1R,2R-cyclohexanediamine) in water gave a CoIIINiIICoIII trinuclear complex, DeltaRRDeltaRR-[Ni(Co(aet)(2-)(R,R-chxn))2]4+ ([1a]4+), in which two cis(S)-[Co(aet)2(R,R-chxn)]+ units are linked by a central NiII ion through sulfur bridges. The two CoIII units in [1a]4+ uniformly adopt the Delta configuration, which is induced by the chirality of the terminal R,R-chxn ligands. The central NiII ion in [1a]4+ was replaced by a PdII ion to produce an analogous CoIIIPdIICoIII trinuclear complex, DeltaRRDeltaRR-[Pd(Co(aet)2(R,R-chxn))2]4+ ([2a]4+), with retention of the Delta configuration. When racemic R,R/S,S-chxn was employed instead of R,R-chxn, not only the chirality about two CoIII centers but also the chirality about two chxn ligands was unified in the S-bridged trinuclear structure, leading to the selective formation of a pair of enantiomers, DeltaRRDeltaRR/LambdaSSLambdaSS-[M(Co(aet)2(chxn))2]4+ (M = NiII ([1b]4+) and PdII ([2b]4+)). The stereochemical and spectroscopic features of these complexes are discussed on the basis of the electronic absorption, CD, and NMR spectroscopies, along with the crystal structures of [1a]4+ and [2a]4+.