Suppr超能文献

使用互相关双变迹法的超声成像旁瓣抑制

Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation.

作者信息

Seo Chi Hyung, Yen Jesse T

机构信息

Biomedical Engineering Department, University of Southern California, Los Angeles, CA, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Oct;55(10):2198-210. doi: 10.1109/TUFFC.919.

Abstract

This paper introduces a novel sidelobe and clutter suppression method in ultrasound imaging called dual apodization with cross-correlation or DAX. DAX dramatically improves the contrast-to-noise ratio (CNR) allowing for easier visualization of anechoic cysts and blood vessels. This technique uses dual apodization or weighting strategies that are effective in removing or minimizing clutter and efficient in terms of computational load and hardware/software needs. This dual apodization allows us to determine the amount of mainlobe versus clutter contribution in a signal by cross-correlating RF data acquired from 2 apodization functions. Simulation results using a 128 element 5 MHz linear array show an improvement in CNR of 139% compared with standard beamformed data with uniform apodization in a 3 mm diameter anechoic cylindrical cyst. Experimental CNR using a tissue-mimicking phantom with the same sized cyst shows an improvement of 123% in a DAX processed image.

摘要

本文介绍了一种超声成像中新颖的旁瓣和杂波抑制方法,称为互相关双变迹法(DAX)。DAX显著提高了对比度噪声比(CNR),使无回声囊肿和血管更易于可视化。该技术采用双变迹或加权策略,能有效去除或最小化杂波,在计算量以及硬件/软件需求方面效率较高。这种双变迹使我们能够通过对从两个变迹函数采集的射频数据进行互相关,来确定信号中主瓣与杂波贡献的量。使用128阵元5MHz线性阵列的模拟结果表明,与在直径3mm的无回声圆柱形囊肿中采用均匀变迹的标准波束形成数据相比,CNR提高了139%。在使用具有相同大小囊肿的组织仿体的实验中,经DAX处理的图像的CNR提高了123%。

相似文献

1
Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Oct;55(10):2198-210. doi: 10.1109/TUFFC.919.
2
Dual apodization with cross-correlation in the presence of phase aberration and noise.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2209-12. doi: 10.1109/IEMBS.2008.4649634.
3
Dual apodization with cross-correlation in the presence of phase aberration and noise.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2542-5. doi: 10.1109/IEMBS.2008.4649718.
4
Evaluating the robustness of dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Feb;56(2):291-303. doi: 10.1109/TUFFC.2009.1038.
5
Synergistic enhancements of ultrasound image contrast with a combination of phase aberration correction and dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Sep;59(9):2089-101. doi: 10.1109/TUFFC.2012.2430.
6
Dual-/tri-apodization techniques for high frequency ultrasound imaging: a simulation study.
Biomed Eng Online. 2014 Oct 11;13:143. doi: 10.1186/1475-925X-13-143.
7
Performance improvement of Fresnel beamforming using dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):451-62. doi: 10.1109/TUFFC.2013.2589.
8
Ultrasonic Reverberation Clutter Suppression Using Multiphase Apodization With Cross Correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Nov;63(11):1947-1956. doi: 10.1109/TUFFC.2016.2597124.
9
Effects of dual apodization with cross-correlation on tissue harmonic and pulse inversion harmonic imaging in the presence of phase aberration.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Mar;60(3):643-9. doi: 10.1109/TUFFC.2013.2607.
10
Improving Spatial Resolution Using Incoherent Subtraction of Receive Beams Having Different Apodizations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jan;66(1):5-17. doi: 10.1109/TUFFC.2018.2876285. Epub 2018 Oct 16.

引用本文的文献

2
Grating Lobe Reduction in Plane-Wave Imaging With Angular Compounding Using Subtraction of Coherent Signals.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3308-3316. doi: 10.1109/TUFFC.2022.3217993. Epub 2022 Nov 24.
3
A theranostic 3D ultrasound imaging system for high resolution image-guided therapy.
Theranostics. 2022 Jun 27;12(11):4949-4964. doi: 10.7150/thno.71221. eCollection 2022.
4
Improving Minimum Variance Beamforming with Sub-Aperture Processing for Photoacoustic Imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2879-2882. doi: 10.1109/EMBC46164.2021.9630278.
5
7
Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2336-2350. doi: 10.1109/TUFFC.2021.3060371. Epub 2021 Jun 29.
8
Challenges of conducting quantitative ultrasound with a multimodal optical imaging system.
Phys Med Biol. 2021 Jan 26;66(3):035008. doi: 10.1088/1361-6560/abc93c.
9
Histogram Matching for Visual Ultrasound Image Comparison.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1487-1495. doi: 10.1109/TUFFC.2020.3035965. Epub 2021 Apr 26.
10
Side lobe free medical ultrasonic imaging with application to assessing side lobe suppression filter.
Biomed Eng Lett. 2018 Jul 7;8(4):355-364. doi: 10.1007/s13534-018-0079-y. eCollection 2018 Nov.

本文引用的文献

1
A 256 x 256 2-D array transducer with row-column addressing for 3-D rectilinear imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Apr;56(4):837-47. doi: 10.1109/TUFFC.2009.1107.
2
Speckle pattern correlation with lateral aperture translation: experimental results and implications for spatial compounding.
IEEE Trans Ultrason Ferroelectr Freq Control. 1986;33(3):257-64. doi: 10.1109/t-uffc.1986.26827.
3
Phase-aberration correction using signals from point reflectors and diffuse scatterers: measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(6):768-74. doi: 10.1109/58.9334.
4
Optimum displacement for compound image generation in medical ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(4):470-6. doi: 10.1109/58.4184.
5
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
6
Phase aberration correction using near-field signal redundancy. I. Principles [Ultrasound medical imaging].
IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):355-71. doi: 10.1109/58.585120.
7
Texture features for classification of ultrasonic liver images.
IEEE Trans Med Imaging. 1992;11(2):141-52. doi: 10.1109/42.141636.
8
Optimal apodization design for medical ultrasound using constrained least squares part II: simulation results.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):343-58. doi: 10.1109/tuffc.2007.248.
9
Optimal apodization design for medical ultrasound using constrained least squares part I: theory.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):332-42. doi: 10.1109/tuffc.2007.247.
10
Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):317-23. doi: 10.1109/tuffc.2006.1593370.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验