Suppr超能文献

基于子孔径处理的自适应光束形成用于光声成像。

Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2336-2350. doi: 10.1109/TUFFC.2021.3060371. Epub 2021 Jun 29.

Abstract

Delay-and-sum (DAS) beamformers, when applied to photoacoustic (PA) image reconstruction, produce strong sidelobes due to the absence of transmit focusing. Consequently, DAS PA images are often severely degraded by strong off-axis clutter. For preclinical in vivo cardiac PA imaging, the presence of these noise artifacts hampers the detectability and interpretation of PA signals from the myocardial wall, crucial for studying blood-dominated cardiac pathological information and to complement functional information derived from ultrasound imaging. In this article, we present PA subaperture processing (PSAP), an adaptive beamforming method, to mitigate these image degrading effects. In PSAP, a pair of DAS reconstructed images is formed by splitting the received channel data into two complementary nonoverlapping subapertures. Then, a weighting matrix is derived by analyzing the correlation between subaperture beamformed images and multiplied with the full-aperture DAS PA image to reduce sidelobes and incoherent clutter. We validated PSAP using numerical simulation studies using point target, diffuse inclusion and microvasculature imaging, and in vivo feasibility studies on five healthy murine models. Qualitative and quantitative analysis demonstrate improvements in PAI image quality with PSAP compared to DAS and coherence factor weighted DAS (DAS ). PSAP demonstrated improved target detectability with a higher generalized contrast-to-noise (gCNR) ratio in vasculature simulations where PSAP produces 19.61% and 19.53% higher gCNRs than DAS and DAS , respectively. Furthermore, PSAP provided higher image contrast quantified using contrast ratio (CR) (e.g., PSAP produces 89.26% and 11.90% higher CR than DAS and DAS in vasculature simulations) and improved clutter suppression.

摘要

延迟求和(DAS)波束形成器在应用于光声(PA)图像重建时,由于缺少发射聚焦,会产生很强的旁瓣。因此,DAS PA 图像经常受到强烈的离轴杂波的严重降级。对于临床前体内心脏 PA 成像,这些噪声伪影的存在阻碍了心肌壁的 PA 信号的检测和解释,对于研究以血液为主导的心脏病理信息以及补充来自超声成像的功能信息至关重要。在本文中,我们提出了 PA 子孔径处理(PSAP),这是一种自适应波束形成方法,可以减轻这些图像降级效应。在 PSAP 中,通过将接收通道数据分成两个互补的不重叠子孔径来形成一对 DAS 重建图像。然后,通过分析子孔径波束形成图像之间的相关性来导出加权矩阵,并将其与全孔径 DAS PA 图像相乘,以减少旁瓣和非相干杂波。我们使用点目标、漫射体和微血管成像的数值模拟研究以及在五个健康的小鼠模型上的体内可行性研究来验证 PSAP。定性和定量分析表明,与 DAS 和相干因子加权 DAS(DAS )相比,PSAP 可以改善 PAI 图像质量。PSAP 在血管模拟中提高了目标检测的可检测性,具有更高的广义对比度噪声比(gCNR),PSAP 分别产生比 DAS 和 DAS 高 19.61%和 19.53%的 gCNR。此外,PSAP 提供了更高的图像对比度,使用对比度比(CR)进行量化(例如,PSAP 在血管模拟中产生比 DAS 和 DAS 高 89.26%和 11.90%的 CR)和更好的杂波抑制。

相似文献

1
Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging.基于子孔径处理的自适应光束形成用于光声成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2336-2350. doi: 10.1109/TUFFC.2021.3060371. Epub 2021 Jun 29.
5
Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation.用于体内心脏光声图像波束形成的时空相干加权。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):586-598. doi: 10.1109/TUFFC.2020.3016900. Epub 2021 Feb 25.
8

本文引用的文献

1
4
Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation.用于体内心脏光声图像波束形成的时空相干加权。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):586-598. doi: 10.1109/TUFFC.2020.3016900. Epub 2021 Feb 25.
8
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.深度学习在实时光声系统中的图像重建。
IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验