Suppr超能文献

基于子孔径处理的自适应光束形成用于光声成像。

Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2336-2350. doi: 10.1109/TUFFC.2021.3060371. Epub 2021 Jun 29.

Abstract

Delay-and-sum (DAS) beamformers, when applied to photoacoustic (PA) image reconstruction, produce strong sidelobes due to the absence of transmit focusing. Consequently, DAS PA images are often severely degraded by strong off-axis clutter. For preclinical in vivo cardiac PA imaging, the presence of these noise artifacts hampers the detectability and interpretation of PA signals from the myocardial wall, crucial for studying blood-dominated cardiac pathological information and to complement functional information derived from ultrasound imaging. In this article, we present PA subaperture processing (PSAP), an adaptive beamforming method, to mitigate these image degrading effects. In PSAP, a pair of DAS reconstructed images is formed by splitting the received channel data into two complementary nonoverlapping subapertures. Then, a weighting matrix is derived by analyzing the correlation between subaperture beamformed images and multiplied with the full-aperture DAS PA image to reduce sidelobes and incoherent clutter. We validated PSAP using numerical simulation studies using point target, diffuse inclusion and microvasculature imaging, and in vivo feasibility studies on five healthy murine models. Qualitative and quantitative analysis demonstrate improvements in PAI image quality with PSAP compared to DAS and coherence factor weighted DAS (DAS ). PSAP demonstrated improved target detectability with a higher generalized contrast-to-noise (gCNR) ratio in vasculature simulations where PSAP produces 19.61% and 19.53% higher gCNRs than DAS and DAS , respectively. Furthermore, PSAP provided higher image contrast quantified using contrast ratio (CR) (e.g., PSAP produces 89.26% and 11.90% higher CR than DAS and DAS in vasculature simulations) and improved clutter suppression.

摘要

延迟求和(DAS)波束形成器在应用于光声(PA)图像重建时,由于缺少发射聚焦,会产生很强的旁瓣。因此,DAS PA 图像经常受到强烈的离轴杂波的严重降级。对于临床前体内心脏 PA 成像,这些噪声伪影的存在阻碍了心肌壁的 PA 信号的检测和解释,对于研究以血液为主导的心脏病理信息以及补充来自超声成像的功能信息至关重要。在本文中,我们提出了 PA 子孔径处理(PSAP),这是一种自适应波束形成方法,可以减轻这些图像降级效应。在 PSAP 中,通过将接收通道数据分成两个互补的不重叠子孔径来形成一对 DAS 重建图像。然后,通过分析子孔径波束形成图像之间的相关性来导出加权矩阵,并将其与全孔径 DAS PA 图像相乘,以减少旁瓣和非相干杂波。我们使用点目标、漫射体和微血管成像的数值模拟研究以及在五个健康的小鼠模型上的体内可行性研究来验证 PSAP。定性和定量分析表明,与 DAS 和相干因子加权 DAS(DAS )相比,PSAP 可以改善 PAI 图像质量。PSAP 在血管模拟中提高了目标检测的可检测性,具有更高的广义对比度噪声比(gCNR),PSAP 分别产生比 DAS 和 DAS 高 19.61%和 19.53%的 gCNR。此外,PSAP 提供了更高的图像对比度,使用对比度比(CR)进行量化(例如,PSAP 在血管模拟中产生比 DAS 和 DAS 高 89.26%和 11.90%的 CR)和更好的杂波抑制。

相似文献

1
Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2336-2350. doi: 10.1109/TUFFC.2021.3060371. Epub 2021 Jun 29.
2
Improving Minimum Variance Beamforming with Sub-Aperture Processing for Photoacoustic Imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2879-2882. doi: 10.1109/EMBC46164.2021.9630278.
4
Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming.
Med Phys. 2023 Dec;50(12):7525-7538. doi: 10.1002/mp.16780. Epub 2023 Oct 16.
5
Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):586-598. doi: 10.1109/TUFFC.2020.3016900. Epub 2021 Feb 25.
6
Adaptive complementary neighboring sub-aperture beamforming for thermoacoustic imaging.
Med Phys. 2024 Oct;51(10):7153-7170. doi: 10.1002/mp.17339. Epub 2024 Aug 1.
7
Enhanced linear-array photoacoustic beamforming using modified coherence factor.
J Biomed Opt. 2018 Feb;23(2):1-10. doi: 10.1117/1.JBO.23.2.026005.
8
Higher-order correlation based real-time beamforming in photoacoustic imaging.
J Opt Soc Am A Opt Image Sci Vis. 2022 Oct 1;39(10):1805-1814. doi: 10.1364/JOSAA.461323.
9
Multiple Delay and Sum With Enveloping Beamforming Algorithm for Photoacoustic Imaging.
IEEE Trans Med Imaging. 2020 Jun;39(6):1812-1821. doi: 10.1109/TMI.2019.2958838. Epub 2019 Dec 10.
10
Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer.
Ultrason Imaging. 2016 Jan;38(1):32-43. doi: 10.1177/0161734615583981. Epub 2015 Apr 28.

引用本文的文献

1
Model-informed deep-learning photoacoustic reconstruction for low-element linear array.
Photoacoustics. 2025 May 16;44:100732. doi: 10.1016/j.pacs.2025.100732. eCollection 2025 Aug.
2
Enhancing image reconstruction in photoacoustic imaging using spatial coherence mean-to-standard-deviation factor beamforming.
Biomed Opt Express. 2024 Nov 5;15(12):6682-6696. doi: 10.1364/BOE.542710. eCollection 2024 Dec 1.
3
Diagnostic and therapeutic optical imaging in cardiovascular diseases.
iScience. 2024 Oct 22;27(11):111216. doi: 10.1016/j.isci.2024.111216. eCollection 2024 Nov 15.
4
Improving Minimum Variance Beamforming with Sub-Aperture Processing for Photoacoustic Imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2879-2882. doi: 10.1109/EMBC46164.2021.9630278.

本文引用的文献

1
Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality.
Biomed Opt Express. 2020 Jun 10;11(7):3684-3698. doi: 10.1364/BOE.391026. eCollection 2020 Jul 1.
2
Image improvement in linear-array photoacoustic imaging using high resolution coherence factor weighting technique.
BMC Biomed Eng. 2019 Apr 5;1:10. doi: 10.1186/s42490-019-0009-9. eCollection 2019.
3
Photoacoustic imaging for surgical guidance: Principles, applications, and outlook.
J Appl Phys. 2020 Aug 14;128(6):060904. doi: 10.1063/5.0018190. Epub 2020 Aug 13.
4
Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):586-598. doi: 10.1109/TUFFC.2020.3016900. Epub 2021 Feb 25.
6
Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo.
Photoacoustics. 2020 Jun 20;20:100197. doi: 10.1016/j.pacs.2020.100197. eCollection 2020 Dec.
8
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.
IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28.
9
A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer.
Exp Biol Med (Maywood). 2020 Apr;245(7):597-605. doi: 10.1177/1535370220914285. Epub 2020 Mar 25.
10
Deep Neural Network-Based Sinogram Super-Resolution and Bandwidth Enhancement for Limited-Data Photoacoustic Tomography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2660-2673. doi: 10.1109/TUFFC.2020.2977210. Epub 2020 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验