Suppr超能文献

直方图匹配用于视觉超声图像比较。

Histogram Matching for Visual Ultrasound Image Comparison.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1487-1495. doi: 10.1109/TUFFC.2020.3035965. Epub 2021 Apr 26.

Abstract

The widespread development of new ultrasound image formation techniques has created a need for a standardized methodology for comparing the resulting images. Traditional methods of evaluation use quantitative metrics to assess the imaging performance in specific tasks, such as point resolution or lesion detection. Quantitative evaluation is complicated by unconventional new methods and nonlinear transformations of the dynamic range of data and images. Transformation-independent image metrics have been proposed for quantifying task performance. However, clinical ultrasound still relies heavily on visualization and qualitative assessment by expert observers. We propose the use of histogram matching to better assess differences across image formation methods. We briefly demonstrate the technique using a set of sample beamforming methods and discuss the implications of such image processing. We present variations of histogram matching and provide code to encourage the application of this method within the imaging community.

摘要

新的超声成象技术的广泛发展,需要一种标准化的方法来比较其结果图象。传统的评估方法使用定量指标来评估在特定任务(如点分辨率或病灶检测)中的成像性能。由于新的非传统方法和数据及图象动态范围的非线性变换,定量评估变得复杂。已提出用于量化任务性能的与变换无关的图象指标。然而,临床超声仍然严重依赖于专家观察者的可视化和定性评估。我们建议使用直方图匹配来更好地评估图象形成方法之间的差异。我们使用一组示例波束形成方法简要地演示了该技术,并讨论了这种图像处理的影响。我们给出了直方图匹配的各种变化,并提供了代码,以鼓励在成像界应用这种方法。

相似文献

1
Histogram Matching for Visual Ultrasound Image Comparison.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1487-1495. doi: 10.1109/TUFFC.2020.3035965. Epub 2021 Apr 26.
2
Texture analysis of ultrasound images obtained with different beamforming techniques and dynamic ranges - A robustness study.
Ultrasonics. 2023 May;131:106940. doi: 10.1016/j.ultras.2023.106940. Epub 2023 Feb 1.
4
The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging.
IEEE Trans Med Imaging. 2015 Apr;34(4):940-9. doi: 10.1109/TMI.2014.2371235. Epub 2014 Nov 20.
5
Fourier Domain Depth Migration for Plane-Wave Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1321-1333. doi: 10.1109/TUFFC.2018.2837000. Epub 2018 May 15.
6
Learning ultrasound rendering from cross-sectional model slices for simulated training.
Int J Comput Assist Radiol Surg. 2021 May;16(5):721-730. doi: 10.1007/s11548-021-02349-6. Epub 2021 Apr 8.
7
F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan;63(1):60-71. doi: 10.1109/TUFFC.2015.2499839. Epub 2015 Nov 11.
9
Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming.
Med Phys. 2023 Dec;50(12):7525-7538. doi: 10.1002/mp.16780. Epub 2023 Oct 16.
10
Covariance Matrix-Based Statistical Beamforming for Medical Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jan;69(1):208-221. doi: 10.1109/TUFFC.2021.3119027. Epub 2021 Dec 31.

引用本文的文献

1
Expanding generalized contrast-to-noise ratio into a clinically relevant measure of lesion detectability by considering size and spatial resolution.
J Med Imaging (Bellingham). 2024 Sep;11(5):057001. doi: 10.1117/1.JMI.11.5.057001. Epub 2024 Oct 23.
2
Landmark-based spherical quasi-conformal mapping for hippocampal surface registration.
Quant Imaging Med Surg. 2024 Jun 1;14(6):3997-4014. doi: 10.21037/qims-23-1297. Epub 2024 May 24.
3
AngioMT: A MATLAB based 2D image-to-physics tool to predict oxygen transport in vascularized microphysiological systems.
PLoS One. 2024 May 15;19(5):e0299160. doi: 10.1371/journal.pone.0299160. eCollection 2024.
4
Implementation of constrained swept synthetic aperture using a mechanical fixture.
Appl Sci (Basel). 2023 Apr 2;13(8). doi: 10.3390/app13084797. Epub 2023 Apr 11.
5
High-Resolution Power Doppler Using Null Subtraction Imaging.
IEEE Trans Med Imaging. 2024 Sep;43(9):3060-3071. doi: 10.1109/TMI.2024.3383768. Epub 2024 Sep 3.
6
Spatial Coherence Approaches to Distinguish Suspicious Mass Contents in Fundamental and Harmonic Breast Ultrasound Images.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jan;71(1):70-84. doi: 10.1109/TUFFC.2023.3332207. Epub 2024 Jan 9.
7
Methods for Enhancing the Robustness of the Generalized Contrast-to-Noise Ratio.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Aug;70(8):831-842. doi: 10.1109/TUFFC.2023.3289157. Epub 2023 Aug 2.
8
Relaxation-Based Radiometric Normalization for Multitemporal Cross-Sensor Satellite Images.
Sensors (Basel). 2023 May 28;23(11):5150. doi: 10.3390/s23115150.
9
Fast 3D Super-Resolution Ultrasound With Adaptive Weight-Based Beamforming.
IEEE Trans Biomed Eng. 2023 Sep;70(9):2752-2761. doi: 10.1109/TBME.2023.3263369. Epub 2023 Aug 30.
10
Combining ADMIRE and MV to Improve Image Quality.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Sep;69(9):2651-2662. doi: 10.1109/TUFFC.2022.3194548. Epub 2022 Aug 26.

本文引用的文献

1
Incoherent Clutter Suppression Using Lag-One Coherence.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Aug;67(8):1544-1557. doi: 10.1109/TUFFC.2020.2977200. Epub 2020 Feb 28.
2
MimickNet, Mimicking Clinical Image Post- Processing Under Black-Box Constraints.
IEEE Trans Med Imaging. 2020 Jun;39(6):2277-2286. doi: 10.1109/TMI.2020.2970867. Epub 2020 Jan 31.
3
The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Apr;67(4):745-759. doi: 10.1109/TUFFC.2019.2956855. Epub 2019 Nov 29.
4
Multi-covariate Imaging of Sub-resolution Targets.
IEEE Trans Med Imaging. 2019 Jul;38(7):1690-1700. doi: 10.1109/TMI.2019.2917021. Epub 2019 May 15.
5
The Effect of Dynamic Range Alterations in the Estimation of Contrast.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jul;66(7):1198-1208. doi: 10.1109/TUFFC.2019.2911267. Epub 2019 Apr 15.
6
Beamforming and Speckle Reduction Using Neural Networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):898-910. doi: 10.1109/TUFFC.2019.2903795. Epub 2019 Mar 8.
7
Deep Neural Networks for Ultrasound Beamforming.
IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.
8
Ultrasound Open Platforms for Next-Generation Imaging Technique Development.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1078-1092. doi: 10.1109/TUFFC.2018.2844560.
9
Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging.
IEEE Trans Med Imaging. 2017 Feb;36(2):396-406. doi: 10.1109/TMI.2016.2610758. Epub 2016 Sep 16.
10
A model and regularization scheme for ultrasonic beamforming clutter reduction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Nov;62(11):1913-27. doi: 10.1109/TUFFC.2015.007004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验