Suppr超能文献

幼贻贝床空间模式模型中的非线性动力学与模式分岔

Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds.

作者信息

Wang Rong-Hua, Liu Quan-Xing, Sun Gui-Quan, Jin Zhen, van de Koppel Johan

机构信息

Department of Mathematics, North University of China, Taiyuan, Shan'xi 030051, People's Republic of China.

出版信息

J R Soc Interface. 2009 Aug 6;6(37):705-18. doi: 10.1098/rsif.2008.0439. Epub 2008 Nov 4.

Abstract

Young mussel beds on soft sediments can display large-scale regular spatial patterns. This phenomenon can be explained relatively simply by a reaction-diffusion-advection (RDA) model of the interaction between algae and mussel, which includes the diffusive spread of mussel and the advection of algae. We present a detailed analysis of pattern formation in this RDA model. We derived the conditions for differential-flow instability that cause the formation of spatial patterns, and then systematically investigated how these patterns depend on model parameters. We also present a detailed study of the patterned solutions in the full nonlinear model, using numerical bifurcation analysis of the ordinary differential equations, which were obtained from the RDA model. We show that spatial patterns occur for a wide range of algal concentrations, even when algal concentration is much lower than the prediction by linear analysis in the RDA model. That is to say, spatial patterns result from the interaction of nonlinear terms. Moreover, patterns with different wavelength, amplitude and movement speed may coexist. The results obtained are consistent with the previous observation that self-organization allows mussels to persist with algal concentrations that would not permit survival of mussels in a homogeneous bed.

摘要

软质沉积物上的幼贝床会呈现出大规模的规则空间格局。这种现象可以通过藻类与贻贝相互作用的反应 - 扩散 - 平流(RDA)模型相对简单地解释,该模型包括贻贝的扩散传播和藻类的平流。我们对这个RDA模型中的模式形成进行了详细分析。我们推导了导致空间模式形成的分流不稳定性条件,然后系统地研究了这些模式如何依赖于模型参数。我们还使用从RDA模型得到的常微分方程的数值分岔分析,对完整非线性模型中的模式化解进行了详细研究。我们表明,即使藻类浓度远低于RDA模型中线性分析的预测值,在很宽的藻类浓度范围内都会出现空间模式。也就是说,空间模式是由非线性项的相互作用产生的。此外,具有不同波长、振幅和移动速度的模式可能共存。所获得的结果与之前的观察结果一致,即自组织使得贻贝能够在均匀床层中藻类浓度不允许其生存的情况下持续存在。

相似文献

3
How does tidal flow affect pattern formation in mussel beds?潮汐流如何影响贻贝床中的模式形成?
J Theor Biol. 2016 Oct 7;406:83-92. doi: 10.1016/j.jtbi.2016.06.025. Epub 2016 Jun 23.
4
Large scale patterns in mussel beds: stripes or spots?贻贝床中的大规模模式:条纹还是斑点?
J Math Biol. 2019 Feb;78(3):815-835. doi: 10.1007/s00285-018-1293-z. Epub 2018 Sep 5.

引用本文的文献

2
High-integrity human intervention in ecosystems: Tracking self-organization modes.高诚信度的人类干预生态系统:追踪自组织模式。
PLoS Comput Biol. 2021 Sep 29;17(9):e1009427. doi: 10.1371/journal.pcbi.1009427. eCollection 2021 Sep.
4
Large scale patterns in mussel beds: stripes or spots?贻贝床中的大规模模式:条纹还是斑点?
J Math Biol. 2019 Feb;78(3):815-835. doi: 10.1007/s00285-018-1293-z. Epub 2018 Sep 5.

本文引用的文献

2
Regular pattern formation in real ecosystems.真实生态系统中的规则模式形成。
Trends Ecol Evol. 2008 Mar;23(3):169-75. doi: 10.1016/j.tree.2007.10.013. Epub 2008 Feb 5.
4
Ecology: scaling laws in the drier.
Nature. 2007 Sep 13;449(7159):151-3. doi: 10.1038/449151a.
8
Localized states in the generalized Swift-Hohenberg equation.广义Swift-Hohenberg方程中的局域态
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 2):056211. doi: 10.1103/PhysRevE.73.056211. Epub 2006 May 31.
9
Experimental steady pattern formation in reaction-diffusion-advection systems.反应扩散对流系统中的实验性稳态图案形成
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):025201. doi: 10.1103/PhysRevE.73.025201. Epub 2006 Feb 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验