Yochelis Arik, Burke John, Knobloch Edgar
Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev Lett. 2006 Dec 22;97(25):254501. doi: 10.1103/PhysRevLett.97.254501.
The formation of oscillons in a synchronously oscillating background is studied in the context of both damped and self-exciting oscillatory media. Using the forced complex Ginzburg-Landau equation we show that such states bifurcate from finite amplitude homogenous states near the 2:1 resonance boundary. In each case we identify a region in parameter space containing a finite multiplicity of coexisting stable oscillons with different structure. Stable time-periodic monotonic and nonmonotonic frontlike states are present in an overlapping region. Both types of structure are related to the presence of a Maxwell point between the zero and finite amplitude homogeneous states.
在阻尼和自激振荡介质的背景下,研究了同步振荡背景中振荡子的形成。利用强迫复金兹堡-朗道方程,我们表明这些状态在2:1共振边界附近从有限振幅均匀状态分岔出来。在每种情况下,我们在参数空间中确定一个区域,该区域包含有限多个具有不同结构的共存稳定振荡子。稳定的时间周期单调和非单调前沿状状态存在于一个重叠区域。这两种结构都与零和有限振幅均匀状态之间的麦克斯韦点的存在有关。