Suppr超能文献

图像中的无监督类别建模、识别与分割。

Unsupervised category modeling, recognition, and segmentation in images.

作者信息

Todorovic Sinisa, Ahuja Narendra

机构信息

Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2158-74. doi: 10.1109/TPAMI.2008.24.

Abstract

Suppose a set of arbitrary (unlabeled) images contains frequent occurrences of 2D objects from an unknown category. This paper is aimed at simultaneously solving the following related problems: (1) unsupervised identification of photometric, geometric, and topological properties of multiscale regions comprising instances of the 2D category; (2) learning a region-based structural model of the category in terms of these properties; and (3) detection, recognition and segmentation of objects from the category in new images. To this end, each image is represented by a tree that captures a multiscale image segmentation. The trees are matched to extract the maximally matching subtrees across the set, which are taken as instances of the target category. The extracted subtrees are then fused into a tree-union that represents the canonical category model. Detection, recognition, and segmentation of objects from the learned category are achieved simultaneously by finding matches of the category model with the segmentation tree of a new image. Experimental validation on benchmark datasets demonstrates the robustness and high accuracy of the learned category models, when only a few training examples are used for learning without any human supervision.

摘要

假设一组任意的(未标记的)图像中频繁出现来自未知类别的二维物体。本文旨在同时解决以下相关问题:(1)无监督识别构成二维类别实例的多尺度区域的光度、几何和拓扑属性;(2)根据这些属性学习该类别的基于区域的结构模型;以及(3)在新图像中检测、识别和分割该类别的物体。为此,每张图像由一棵捕获多尺度图像分割的树来表示。通过匹配这些树来提取整个集合中最大匹配的子树,这些子树被视为目标类别的实例。然后将提取的子树融合成一个表示规范类别模型的树并集。通过找到类别模型与新图像的分割树的匹配项,同时实现对所学类别的物体的检测、识别和分割。在基准数据集上的实验验证表明,当仅使用少量训练示例进行学习且无任何人工监督时,所学类别模型具有鲁棒性和高精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验