Sung Jaemo, Ghahramani Zoubin, Bang Sung-Yang
Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea.
IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2236-42. doi: 10.1109/TPAMI.2008.157.
Variational Bayesian Expectation-Maximization (VBEM), an approximate inference method for probabilistic models based on factorizing over latent variables and model parameters, has been a standard technique for practical Bayesian inference. In this paper, we introduce a more general approximate inference framework for conjugate-exponential family models, which we call Latent-Space Variational Bayes (LSVB). In this approach, we integrate out model parameters in an exact way, leaving only the latent variables. It can be shown that the LSVB approach gives better estimates of the model evidence as well as the distribution over latent variables than the VBEM approach, but in practice, the distribution over latent variables has to be approximated. As a practical implementation, we present a First-order LSVB (FoLSVB) algorithm to approximate this distribution over latent variables. From this approximate distribution, one can estimate the model evidence and the posterior over model parameters. The FoLSVB algorithm is directly comparable to the VBEM algorithm and has the same computational complexity. We discuss how LSVB generalizes the recently proposed collapsed variational methods [20] to general conjugate-exponential families. Examples based on mixtures of Gaussians and mixtures of Bernoullis with synthetic and real-world data sets are used to illustrate some advantages of our method over VBEM.
变分贝叶斯期望最大化(VBEM)是一种基于对潜在变量和模型参数进行因式分解的概率模型近似推断方法,一直是实际贝叶斯推断的标准技术。在本文中,我们为共轭指数族模型引入了一个更通用的近似推断框架,我们称之为潜空间变分贝叶斯(LSVB)。在这种方法中,我们以精确的方式对模型参数进行积分,只留下潜在变量。可以证明,与VBEM方法相比,LSVB方法能更好地估计模型证据以及潜在变量上的分布,但在实际中,潜在变量上的分布必须进行近似。作为一种实际实现方式,我们提出了一种一阶LSVB(FoLSVB)算法来近似潜在变量上的这种分布。从这个近似分布中,可以估计模型证据和模型参数的后验分布。FoLSVB算法可直接与VBEM算法进行比较,并且具有相同的计算复杂度。我们讨论了LSVB如何将最近提出的塌缩变分方法[20]推广到一般的共轭指数族。基于高斯混合模型和伯努利混合模型以及合成数据集和真实世界数据集的例子被用来阐述我们的方法相对于VBEM的一些优势。