Gao Junbin
School of Computer Science, Charles Sturt University, Bathurst, NSW, Australia.
Neural Comput. 2008 Feb;20(2):555-72. doi: 10.1162/neco.2007.11-06-397.
We introduce a robust probabilistic L1-PCA model in which the conventional gaussian distribution for the noise in the observed data was replaced by the Laplacian distribution (or L1 distribution). Due to the heavy tail characteristics of the L1 distribution, the proposed model is supposed to be more robust against data outliers. In this letter, we demonstrate how a variational approximation scheme enables effective inference of key parameters in the probabilistic L1-PCA model. As the L1 density can be expanded as a superposition of infinite number of gaussian densities, we express the L1-PCA model as a marginalized model over the superpositions. By doing so, a tractable Bayesian inference can be achieved based on the variational expectation-maximization-type algorithm.
我们引入了一种稳健的概率L1主成分分析(PCA)模型,其中观测数据中噪声的传统高斯分布被拉普拉斯分布(或L1分布)所取代。由于L1分布的重尾特性,所提出的模型被认为对数据异常值更具稳健性。在这封信中,我们展示了变分近似方案如何能够有效地推断概率L1-PCA模型中的关键参数。由于L1密度可以展开为无限多个高斯密度的叠加,我们将L1-PCA模型表示为叠加之上的边缘化模型。通过这样做,可以基于变分期望最大化类型的算法实现易于处理的贝叶斯推断。