Suppr超能文献

稳健的L1主成分分析及其贝叶斯变分推断。

Robust L1 principal component analysis and its Bayesian variational inference.

作者信息

Gao Junbin

机构信息

School of Computer Science, Charles Sturt University, Bathurst, NSW, Australia.

出版信息

Neural Comput. 2008 Feb;20(2):555-72. doi: 10.1162/neco.2007.11-06-397.

Abstract

We introduce a robust probabilistic L1-PCA model in which the conventional gaussian distribution for the noise in the observed data was replaced by the Laplacian distribution (or L1 distribution). Due to the heavy tail characteristics of the L1 distribution, the proposed model is supposed to be more robust against data outliers. In this letter, we demonstrate how a variational approximation scheme enables effective inference of key parameters in the probabilistic L1-PCA model. As the L1 density can be expanded as a superposition of infinite number of gaussian densities, we express the L1-PCA model as a marginalized model over the superpositions. By doing so, a tractable Bayesian inference can be achieved based on the variational expectation-maximization-type algorithm.

摘要

我们引入了一种稳健的概率L1主成分分析(PCA)模型,其中观测数据中噪声的传统高斯分布被拉普拉斯分布(或L1分布)所取代。由于L1分布的重尾特性,所提出的模型被认为对数据异常值更具稳健性。在这封信中,我们展示了变分近似方案如何能够有效地推断概率L1-PCA模型中的关键参数。由于L1密度可以展开为无限多个高斯密度的叠加,我们将L1-PCA模型表示为叠加之上的边缘化模型。通过这样做,可以基于变分期望最大化类型的算法实现易于处理的贝叶斯推断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验