Image Analysis Lab., Radiology Department, Henry Ford Hospital, Detroit, MI 48202, USA.
Math Biosci. 2011 Jan;229(1):76-92. doi: 10.1016/j.mbs.2010.11.001. Epub 2010 Nov 16.
In Part I and Part II of these two companion papers (henceforth called Part I and Part II), we develop and evaluate a variational Bayesian expectation maximization (VBEM) method for model inversion of our multi-area extended neural mass model (MEN). In this paper, we develop the VBEM method to estimate posterior distributions of parameters of MEN. We choose suitable prior distributions for the model parameters in order to use properties of a conjugate-exponential model in implementing VBEM. Consequently, VBEM leads to analytically tractable forms. The proposed VBEM algorithm starts with initialization and consists of repeated iterations of a variational Bayesian expectation step (VB E-step) and a variational Bayesian maximization step (VB M-step). Posterior distributions of the model parameters are updated in the VB M-step. Distribution of the hidden state is updated in the VB E-step. We develop a variational extended Kalman smoother (VEKS) to infer the distribution of the hidden state in the VB E-step and derive the forward and backward passes of VEKS, analogous to the Kalman smoother. In Part I, we evaluate and validate the VBEM method using simulation studies.
在这两篇配套论文的第一部分和第二部分(以下简称第一部分和第二部分)中,我们开发并评估了一种变分贝叶斯期望最大化(VBEM)方法,用于我们的多区域扩展神经质量模型(MEN)的模型反演。在本文中,我们开发了 VBEM 方法来估计 MEN 的参数的后验分布。我们为模型参数选择合适的先验分布,以便在实现 VBEM 时利用共轭指数模型的性质。因此,VBEM 导致了可分析的形式。所提出的 VBEM 算法从初始化开始,包括变分贝叶斯期望步骤(VB E-步骤)和变分贝叶斯最大化步骤(VB M-步骤)的重复迭代。在 VB M-步骤中更新模型参数的后验分布。在 VB E-步骤中更新隐藏状态的分布。我们开发了一种变分扩展卡尔曼平滑器(VEKS)来推断 VB E-步骤中隐藏状态的分布,并推导类似于卡尔曼平滑器的 VEKS 的前向和后向传递。在第一部分中,我们使用模拟研究评估和验证 VBEM 方法。