Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
Part Fibre Toxicol. 2008 Nov 6;5:14. doi: 10.1186/1743-8977-5-14.
The aim of this study was to establish and validate a practical method to disperse nanoparticles in physiological solutions for biological in vitro and in vivo studies.
TiO2 (rutile) dispersions were prepared in distilled water, PBS, or RPMI 1640 cell culture medium. Different ultrasound energies, various dispersion stabilizers (human, bovine, and mouse serum albumin, Tween 80, and mouse serum), various concentrations of stabilizers, and different sequences of preparation steps were applied. The size distribution of dispersed nanoparticles was analyzed by dynamic light scattering and zeta potential was measured using phase analysis light scattering. Nanoparticle size was also verified by transmission electron microscopy. A specific ultrasound energy of 4.2 x 105 kJ/m3 was sufficient to disaggregate TiO2 (rutile) nanoparticles, whereas higher energy input did not further improve size reduction. The optimal sequence was first to sonicate the nanoparticles in water, then to add dispersion stabilizers, and finally to add buffered salt solution to the dispersion. The formation of coarse TiO2 (rutile) agglomerates in PBS or RPMI was prevented by addition of 1.5 mg/ml of human, bovine or mouse serum albumin, or mouse serum. The required concentration of albumin to stabilize the nanoparticle dispersion depended on the concentration of the nanoparticles in the dispersion. TiO2 (rutile) particle dispersions at a concentration lower than 0.2 mg/ml could be stabilized by the addition of 1.5 mg/ml albumin. TiO2 (rutile) particle dispersions prepared by this method were stable for up to at least 1 week. This method was suitable for preparing dispersions without coarse agglomerates (average diameter < 290 nm) from nanosized TiO2 (rutile), ZnO, Ag, SiOx, SWNT, MWNT, and diesel SRM2975 particulate matter.
The optimized dispersion method presented here appears to be effective and practicable for preparing dispersions of nanoparticles in physiological solutions without creating coarse agglomerates.
本研究旨在建立并验证一种实用的方法,以便将纳米颗粒分散在生理溶液中,用于生物体外和体内研究。
在蒸馏水、PBS 或 RPMI 1640 细胞培养基中制备 TiO2(金红石)分散体。应用了不同的超声能量、各种分散稳定剂(人、牛和鼠血清白蛋白、吐温 80 和鼠血清)、不同稳定剂浓度以及不同的制备步骤顺序。通过动态光散射分析分散纳米颗粒的粒径分布,使用相分析光散射法测量zeta 电位。纳米颗粒的粒径也通过透射电子显微镜进行了验证。特定的超声能量 4.2 x 105 kJ/m3 足以解团聚 TiO2(金红石)纳米颗粒,而更高的能量输入并不能进一步减小粒径。最佳的顺序是首先在水中超声处理纳米颗粒,然后加入分散稳定剂,最后将缓冲盐溶液加入分散体中。通过添加 1.5 mg/ml 的人、牛或鼠血清白蛋白或鼠血清,可以防止 PBS 或 RPMI 中 TiO2(金红石)粗团聚体的形成。稳定纳米颗粒分散体所需的白蛋白浓度取决于分散体中纳米颗粒的浓度。浓度低于 0.2 mg/ml 的 TiO2(金红石)颗粒分散体可以通过添加 1.5 mg/ml 的白蛋白来稳定。通过该方法制备的 TiO2(金红石)颗粒分散体在至少 1 周内稳定。该方法适用于制备无粗团聚体(平均直径<290nm)的纳米 TiO2(金红石)、ZnO、Ag、SiOx、SWNT、MWNT 和柴油 SRM2975 颗粒物的分散体。
本文提出的优化分散方法似乎对于在生理溶液中制备纳米颗粒分散体而不形成粗团聚体是有效且可行的。