Suppr超能文献

双能计算机断层扫描中非线性混合的评估。

Evaluation of non-linear blending in dual-energy computed tomography.

机构信息

Biomedical Imaging Resource, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, United States.

出版信息

Eur J Radiol. 2008 Dec;68(3):409-13. doi: 10.1016/j.ejrad.2008.09.017. Epub 2008 Nov 5.

Abstract

Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued.

摘要

双能 CT 扫描在疾病识别和分类方面具有重要的潜力。然而,它显著增加了所收集的数据量,因此影响了临床工作流程。一种简化图像审查的方法是将不同管能的 CT 数据集融合到具有理想特性的独特混合数据集中。本文比较了一种基于修正型 sigmoid 函数的非线性混合方法和一种标准的 0.3 线性混合方法。这两种方法在肝脏体模和患者研究中都进行了评估。肝脏体模中包含六个已知 CT 对比剂的注射器,它们被放置在牛的肝脏中。在多个管电流(140kV 管的 45、55、65、75、85、95、105 和 115 mAs)下扫描后,使用这两种方法对数据集进行混合。为每个注射器计算了对比噪声比(CNR)。此外,还对所有 8 个扫描进行了归一化,并进行了统计学比较。在患者研究中,使用 0.3 线性混合和修正型 sigmoid 混合函数对 45 次双能 CT 扫描进行了回顾性混合。由两位放射科医生对扫描进行了视觉比较。对于 15、45 和 64 HU 注射器,非线性混合图像的 CNR 与线性混合图像相似;然而,对于 79、116 和 145 HU 注射器,在不同剂量设置下,非线性混合图像的 CNR 始终更高。放射科医生在体模中更喜欢非线性混合图像。在患者研究中,放射科医生在 45 个病例中有 31 个更喜欢非线性混合,在肠和肝病例中更喜欢强烈。与线性混合相比,双能数据的非线性混合可以提高 CNR,并伴有对非线性混合图像的视觉偏好。目前正在进一步研究非线性混合图像中混合参数的选择和病变的显著程度。

相似文献

1
Evaluation of non-linear blending in dual-energy computed tomography.
Eur J Radiol. 2008 Dec;68(3):409-13. doi: 10.1016/j.ejrad.2008.09.017. Epub 2008 Nov 5.
6
Frequency Selective Non-Linear Blending to Improve Image Quality in Liver CT.
Rofo. 2016 Dec;188(12):1163-1168. doi: 10.1055/s-0042-116440. Epub 2016 Dec 1.
10
Use of non-linear image blending with dual-energy CT improves vascular visualization in abdominal angiography.
Clin Radiol. 2014 Feb;69(2):e93-9. doi: 10.1016/j.crad.2013.09.019. Epub 2013 Nov 26.

引用本文的文献

1
Value of low-keV virtual monoenergetic plus dual-energy computed tomographic imaging for detection of acute pulmonary embolism.
PLoS One. 2022 Nov 11;17(11):e0277060. doi: 10.1371/journal.pone.0277060. eCollection 2022.
2
Spectral computed tomography with inorganic nanomaterials: State-of-the-art.
Adv Drug Deliv Rev. 2022 Oct;189:114524. doi: 10.1016/j.addr.2022.114524. Epub 2022 Sep 2.
3
Technical Principles of Dual-Energy Cone Beam Computed Tomography and Clinical Applications for Radiation Therapy.
Adv Radiat Oncol. 2019 Jul 30;5(1):1-16. doi: 10.1016/j.adro.2019.07.013. eCollection 2020 Jan-Feb.
4
Extra-abdominal dual-energy CT applications: a comprehensive overview.
Radiol Med. 2020 Apr;125(4):384-397. doi: 10.1007/s11547-019-01126-5. Epub 2020 Jan 10.
5
Dual-Energy CT in Head and Neck Imaging.
Curr Radiol Rep. 2017;5(5):19. doi: 10.1007/s40134-017-0213-0. Epub 2017 Mar 29.
6
Optimal Contrast of Cerebral Dual-Energy Computed Tomography Angiography in Patients With Spontaneous Subarachnoid Hemorrhage.
J Comput Assist Tomogr. 2016 Jan-Feb;40(1):48-52. doi: 10.1097/RCT.0000000000000336.
8
Hypodense liver lesions in patients with hepatic steatosis: do we profit from dual-energy computed tomography?
Eur Radiol. 2015 Dec;25(12):3567-76. doi: 10.1007/s00330-015-3772-6. Epub 2015 May 17.

本文引用的文献

2
Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT.
Acad Radiol. 2007 Dec;14(12):1441-7. doi: 10.1016/j.acra.2007.09.016.
3
Clinical image: Dual-energy computed tomographic molecular imaging of gout.
Arthritis Rheum. 2007 Aug;56(8):2809. doi: 10.1002/art.22803.
4
Material differentiation by dual energy CT: initial experience.
Eur Radiol. 2007 Jun;17(6):1510-7. doi: 10.1007/s00330-006-0517-6. Epub 2006 Dec 7.
5
First performance evaluation of a dual-source CT (DSCT) system.
Eur Radiol. 2006 Feb;16(2):256-68. doi: 10.1007/s00330-005-2919-2. Epub 2005 Dec 10.
6
Three-dimensional imaging of heart, lungs, and circulation.
Science. 1980 Oct 17;210(4467):273-80. doi: 10.1126/science.7423187.
7
Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT.
Radiology. 1982 Nov;145(2):493-6. doi: 10.1148/radiology.145.2.7134457.
8
Computerized transverse axial scanning (tomography). 1. Description of system.
Br J Radiol. 1973 Dec;46(552):1016-22. doi: 10.1259/0007-1285-46-552-1016.
9
Energy dependent reconstruction in X-ray computerized tomography.
Comput Biol Med. 1976 Oct;6(4):325-36. doi: 10.1016/0010-4825(76)90069-x.
10
Energy-selective reconstructions in X-ray computerized tomography.
Phys Med Biol. 1976 Sep;21(5):733-44. doi: 10.1088/0031-9155/21/5/002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验