Suppr超能文献

通过异源表达生产青蒿素的最新进展。

Recent advances in artemisinin production through heterologous expression.

作者信息

Arsenault Patrick R, Wobbe Kristin K, Weathers Pamela J

机构信息

Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

Curr Med Chem. 2008;15(27):2886-96. doi: 10.2174/092986708786242813.

Abstract

Artemisinin the sesquiterpene endoperoxide lactone extracted from the herb Artemisia annua, remains the basis for the current preferred treatment against the malaria parasite Plasmodium falciparum. In addition, artemisinin and its derivatives show additional anti-parasite, anti-cancer, and anti-viral properties. Widespread use of this valuable secondary metabolite has been hampered by low production in vivo and high cost of chemical synthesis in vitro. Novel production methods are required to accommodate the ever-growing need for this important drug. Past work has focused on increasing production through traditional breeding approaches, with limited success, and on engineering cultured plants for high production in bioreactors. New research is focusing on heterologous expression systems for this unique biochemical pathway. Recently discovered genes, including a cytochrome P450 and its associated reductase, have been shown to catalyze multiple steps in the biochemical pathway leading to artemisinin. This has the potential to make a semi-synthetic approach to production both possible and cost effective. Artemisinin precursor production in engineered Saccharomyces cerevisiae is about two orders of magnitude higher than from field-grown A. annua. Efforts to increase flux through engineered pathways are on-going in both E. coli and S. cerevisiae through combinations of engineering precursor pathways and downstream optimization of gene expression. This review will compare older approaches to overproduction of this important drug, and then focus on the results from the newer approaches using heterologous expression systems and how they might meet the demands for treating malaria and other diseases.

摘要

青蒿素是从植物黄花蒿中提取的倍半萜内过氧化物内酯,仍然是目前治疗恶性疟原虫的首选药物的基础。此外,青蒿素及其衍生物还具有额外的抗寄生虫、抗癌和抗病毒特性。这种有价值的次生代谢产物的广泛应用受到其体内产量低和体外化学合成成本高的阻碍。需要新的生产方法来满足对这种重要药物不断增长的需求。过去的工作主要集中在通过传统育种方法提高产量,但成效有限,以及对培养植物进行工程改造以在生物反应器中实现高产。新的研究重点是针对这一独特生化途径的异源表达系统。最近发现的基因,包括一种细胞色素P450及其相关还原酶,已被证明可催化青蒿素生物合成途径中的多个步骤。这有可能使半合成生产方法成为可能且具有成本效益。在工程改造的酿酒酵母中,青蒿素前体的产量比田间种植的黄花蒿高出约两个数量级。通过工程改造前体途径和下游基因表达优化的组合,大肠杆菌和酿酒酵母都在持续努力提高工程途径的通量。本综述将比较过去提高这种重要药物产量的方法,然后重点关注使用异源表达系统的新方法的结果,以及它们如何满足治疗疟疾和其他疾病的需求。

相似文献

1
Recent advances in artemisinin production through heterologous expression.
Curr Med Chem. 2008;15(27):2886-96. doi: 10.2174/092986708786242813.
2
Searching for artemisinin production improvement in plants and microorganisms.
Curr Pharm Biotechnol. 2011 Nov;12(11):1743-51. doi: 10.2174/138920111798376923.
3
Production of the antimalarial drug precursor artemisinic acid in engineered yeast.
Nature. 2006 Apr 13;440(7086):940-3. doi: 10.1038/nature04640.
4
From Plant to Yeast-Advances in Biosynthesis of Artemisinin.
Molecules. 2022 Oct 14;27(20):6888. doi: 10.3390/molecules27206888.
5
Enhanced artemisinin yield by expression of rol genes in Artemisia annua.
Malar J. 2015 Oct 29;14:424. doi: 10.1186/s12936-015-0951-5.
6
Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism.
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15150-15155. doi: 10.1073/pnas.1611567113. Epub 2016 Dec 7.
8
Metabolic engineering of artemisinin biosynthesis in Artemisia annua L.
Plant Cell Rep. 2011 May;30(5):689-94. doi: 10.1007/s00299-010-0967-9. Epub 2010 Dec 24.
9
Increasing the Strength and Production of Artemisinin and Its Derivatives.
Molecules. 2018 Jan 3;23(1):100. doi: 10.3390/molecules23010100.
10
Transgenic approach to increase artemisinin content in Artemisia annua L.
Plant Cell Rep. 2014 Apr;33(4):605-15. doi: 10.1007/s00299-014-1566-y. Epub 2014 Jan 12.

引用本文的文献

1
Comparison of phytochemical properties and expressional profiling of artemisinin synthesis-related genes in various species.
Heliyon. 2024 Feb 17;10(5):e26388. doi: 10.1016/j.heliyon.2024.e26388. eCollection 2024 Mar 15.
2
Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants.
Antibiotics (Basel). 2022 Oct 9;11(10):1380. doi: 10.3390/antibiotics11101380.
3
Assessment of Artemisinin Contents in Selected Species from Tajikistan (Central Asia).
Medicines (Basel). 2019 Jan 31;6(1):23. doi: 10.3390/medicines6010023.
4
Biotechnological approaches for artemisinin production in Artemisia.
World J Microbiol Biotechnol. 2018 Mar 27;34(4):54. doi: 10.1007/s11274-018-2432-9.
5
Synthetic Strategies for Peroxide Ring Construction in Artemisinin.
Molecules. 2017 Jan 11;22(1):117. doi: 10.3390/molecules22010117.
6
An enzymatic platform for the synthesis of isoprenoid precursors.
PLoS One. 2014 Aug 25;9(8):e105594. doi: 10.1371/journal.pone.0105594. eCollection 2014.
7
Potential ecological roles of artemisinin produced by Artemisia annua L.
J Chem Ecol. 2014 Feb;40(2):100-17. doi: 10.1007/s10886-014-0384-6. Epub 2014 Feb 6.
8
Transgenic approach to increase artemisinin content in Artemisia annua L.
Plant Cell Rep. 2014 Apr;33(4):605-15. doi: 10.1007/s00299-014-1566-y. Epub 2014 Jan 12.
9
Plant community characteristics and their responses to environmental factors in the water level fluctuation zone of the three gorges reservoir in China.
Environ Sci Pollut Res Int. 2013 Oct;20(10):7080-91. doi: 10.1007/s11356-013-1702-1. Epub 2013 Apr 16.
10
Dried whole plant Artemisia annua as an antimalarial therapy.
PLoS One. 2012 Dec 20;7(12):e52746. doi: 10.1371/journal.pone.0052746.

本文引用的文献

2
Measuring the burden of neglected tropical diseases: the global burden of disease framework.
PLoS Negl Trop Dis. 2007 Nov 7;1(2):e114. doi: 10.1371/journal.pntd.0000114.
3
Production of artemisinin by genetically-modified microbes.
Biotechnol Lett. 2008 Apr;30(4):581-92. doi: 10.1007/s10529-007-9596-y. Epub 2007 Nov 16.
5
6
Ensuring sustained ACT production and reliable artemisinin supply.
Malar J. 2007 Sep 15;6:125. doi: 10.1186/1475-2875-6-125.
7
Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua.
Bioresour Technol. 2008 Jul;99(11):4609-14. doi: 10.1016/j.biortech.2007.06.061. Epub 2007 Sep 4.
8
Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways.
Plant Cell Rep. 2007 Dec;26(12):2129-36. doi: 10.1007/s00299-007-0420-x. Epub 2007 Aug 21.
10
Metabolic flux elucidation for large-scale models using 13C labeled isotopes.
Metab Eng. 2007 Sep-Nov;9(5-6):387-405. doi: 10.1016/j.ymben.2007.05.005. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验