Suppr超能文献

在工程酵母中生产抗疟药物前体青蒿酸。

Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

作者信息

Ro Dae-Kyun, Paradise Eric M, Ouellet Mario, Fisher Karl J, Newman Karyn L, Ndungu John M, Ho Kimberly A, Eachus Rachel A, Ham Timothy S, Kirby James, Chang Michelle C Y, Withers Sydnor T, Shiba Yoichiro, Sarpong Richmond, Keasling Jay D

机构信息

California Institute of Quantitative Biomedical Research, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.

出版信息

Nature. 2006 Apr 13;440(7086):940-3. doi: 10.1038/nature04640.

Abstract

Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.

摘要

疟疾是一个全球性的健康问题,威胁着3亿至5亿人,每年导致超过100万人死亡。疟疾寄生虫恶性疟原虫多重耐药菌株的出现阻碍了疾病控制。目前正在研发合成抗疟药物和疟疾疫苗,但其对疟疾的疗效尚待严格的临床试验验证。青蒿素是从黄花蒿(菊科;俗称青蒿)中提取的一种倍半萜内酯过氧化物,对多重耐药疟原虫具有高效性,但供应短缺,大多数疟疾患者难以承受。尽管青蒿素的全合成困难且成本高昂,但从微生物来源的青蒿酸(其直接前体)半合成青蒿素或任何衍生物,可能是一种具有成本效益、环境友好、高质量且可靠的青蒿素来源。在此,我们报告了通过工程改造酿酒酵母,利用工程化的甲羟戊酸途径、紫穗槐二烯合酶以及来自黄花蒿的一种新型细胞色素P450单加氧酶(CYP71AV1),将紫穗槐-4,11-二烯三步氧化为青蒿酸,从而生产高滴度(高达100 mg l(-1))青蒿酸的方法。合成的青蒿酸被转运到工程酵母外部并保留在那里,这意味着可以使用简单且廉价的纯化工艺来获得所需产品。尽管工程酵母已经能够以比黄花蒿显著更高的比生产率生产青蒿酸,但仍需要优化产量并扩大工业规模,以使青蒿酸产量提高到足以将青蒿素联合疗法的价格大幅降低至当前价格以下的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验