O'Callaghan James P, Sriram Krishnan, Miller Diane B
Centers for Disease Control and Prevention-NIOSH Morgantown, West Virginia, USA.
Ann N Y Acad Sci. 2008 Oct;1139:318-30. doi: 10.1196/annals.1432.032.
Neuroinflammation is a hot topic in contemporary neuroscience. A relatively new open-access journal, the Journal of Neuroinflammation, focuses on this field. As another example, abstracts to the 2007 Annual Meeting of the Society for Neuroscience could be submitted in several subcategories of neuroinflammation, a strong signal of growth in this research area. While it is becoming clear that activation of microglia and astroglia and the attendant expression of proinflammatory cytokines and chemokines often are associated with disease-, trauma-, and toxicant-induced damage to the CNS, it is by no means clear that a cause-and-effect relationship exists between the presence of a neuroinflammatory process and neural damage. We have explored this issue with two models of dopaminergic neurotoxicity. We used a single low-dose regimen of MPTP or METH, a paradigm that causes selective degeneration of striatal dopaminergic nerve terminals without affecting the cell body in the substantia nigra. Both compounds increased the expression of the microglia-associated factors, Il-1alpha, Il6, Ccl2, and Tnf-alpha, and also elicited morphologic evidence of microglial activation prior to induction of astrogliosis. Pharmacologic antagonism of MPTP and METH neurotoxicity prevented these proinflammatory responses, findings suggestive of a link between neuroinflammation and the observed neurotoxic outcomes. Nevertheless, when we used minocycline to suppress the expression of all these mediators, with the exception of Tnf-alpha, we failed to see neuroprotection. Likewise, when we examined the effects of MPTP or METH in transgenic mice lacking Il6, Ccl2, or Tnfr1/2 genes, deficiency of either Il6 or Ccl2 did not alter neurotoxicity, whereas deficiency in Tnfr1/2 was neuroprotective. Although these observations pointed to a role of the proinflammatory cytokine, TNF-alpha, in the neurotoxic effects of MPTP and METH, other observations did not support this supposition. For example, activation of NF-kappaB or induction of iNOS, known components of inflammatory responses and free radical formation, were not observed. Moreover, immunosuppressive regimens of glucocorticoids failed to suppress TNF-alpha or attenuate neurotoxicity. Taken together, our observations suggest that MPTP and METH neurotoxicity are associated with the elaboration of a "neuroinflammatory" response, yet this response lacks key features of inflammation and, with the exception of TNF-alpha, neurotoxicity appears to be the cause rather than the consequence of proinflammatory signals.
神经炎症是当代神经科学中的一个热门话题。一本相对较新的开放获取期刊《神经炎症杂志》专注于这一领域。再举个例子,2007年神经科学学会年会上的摘要可以提交到神经炎症的几个子类别中,这是该研究领域发展的一个强烈信号。虽然越来越清楚的是,小胶质细胞和星形胶质细胞的激活以及随之而来的促炎细胞因子和趋化因子的表达通常与疾病、创伤和毒物诱导的中枢神经系统损伤有关,但神经炎症过程的存在与神经损伤之间是否存在因果关系还远不清楚。我们用两种多巴胺能神经毒性模型探讨了这个问题。我们使用了单一低剂量方案的MPTP或METH,这种模式会导致纹状体多巴胺能神经末梢选择性退化,而不影响黑质中的细胞体。这两种化合物都增加了与小胶质细胞相关的因子Il-1α、Il6、Ccl2和Tnf-α的表达,并且在星形胶质细胞增生诱导之前就引发了小胶质细胞激活的形态学证据。MPTP和METH神经毒性的药理学拮抗作用阻止了这些促炎反应,这些发现提示神经炎症与观察到的神经毒性结果之间存在联系。然而,当我们用米诺环素抑制所有这些介质(除了Tnf-α)的表达时,我们没有看到神经保护作用。同样,当我们检查MPTP或METH对缺乏Il6、Ccl2或Tnfr1/2基因的转基因小鼠的影响时,Il6或Ccl2的缺乏并没有改变神经毒性,而Tnfr1/2的缺乏具有神经保护作用。虽然这些观察结果表明促炎细胞因子TNF-α在MPTP和METH的神经毒性作用中起作用,但其他观察结果并不支持这一假设。例如,没有观察到炎症反应和自由基形成的已知成分NF-κB的激活或iNOS的诱导。此外,糖皮质激素的免疫抑制方案未能抑制TNF-α或减轻神经毒性。综上所述,我们的观察结果表明,MPTP和METH神经毒性与一种“神经炎症”反应的产生有关,但这种反应缺乏炎症的关键特征,并且除了TNF-α之外,神经毒性似乎是促炎信号的原因而非结果。