Lesellier E
Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS UMR 6005, B.P. 6759, rue de Chartres, 45067 Orléans cedex 2, France.
J Chromatogr A. 2009 Mar 6;1216(10):1881-90. doi: 10.1016/j.chroma.2008.10.081. Epub 2008 Oct 28.
Whereas the retention rules of achiral compounds are well defined in high-performance liquid chromatography, on the basis of the nature of the stationary phase, some difficulties appear in super/subcritical fluid chromatography on packed columns. This is mainly due to the supposed effect of volatility on retention behaviours in supercritical fluid chromatography (SFC) and to the nature of carbon dioxide, which is not polar, thus SFC is classified as a normal-phase separation technique. Moreover, additional effects are not well known and described. They are mainly related to density changes of the mobile phase or to adsorption of fluid on the stationary phase causing a modification of its surface. It is admitted that pressure or temperature modifications induce variation in the eluotropic strength of the mobile phase, but effects of flow rate or column length on retention factor changes are more surprising. Nevertheless, the retention behaviour in SFC first depends on the stationary phase nature. Working with polar stationary phases induces normal-phase retention behaviour, whereas using non-polar bonded phases induces reversed-phase retention behaviour. These rules are verified for most carbon dioxide-based mobile phases in common use (CO(2)/MeOH, CO(2)/acetonitrile or CO(2)/EtOH). Moreover, the absence of water in the mobile phase favours the interactions between the compounds and the stationary phase, compared to what occurs in hydro-organic liquids. Other stationary phases such as aromatic phases and polymers display intermediate behaviours. In this paper, all these behaviours are discussed, mainly by using log k-log k plots, which allow a simple comparison of stationary phase properties. Some examples are presented to illustrate these retention properties.
在手性化合物的保留规则在高效液相色谱中已得到明确界定的情况下,基于固定相的性质,填充柱超临界/亚临界流体色谱却出现了一些困难。这主要是由于超临界流体色谱(SFC)中挥发性对保留行为的假定影响以及二氧化碳的性质(二氧化碳是非极性的,因此SFC被归类为正相分离技术)。此外,其他影响尚不为人熟知和描述。它们主要与流动相的密度变化或流体在固定相上的吸附导致其表面改性有关。人们承认压力或温度的改变会引起流动相洗脱强度的变化,但流速或柱长对保留因子变化的影响更令人惊讶。然而,SFC中的保留行为首先取决于固定相的性质。使用极性固定相会导致正相保留行为,而使用非极性键合相则会导致反相保留行为。这些规则在大多数常用的基于二氧化碳的流动相(CO₂/甲醇、CO₂/乙腈或CO₂/乙醇)中得到了验证。此外,与在水-有机液体中的情况相比,流动相中无水有利于化合物与固定相之间的相互作用。其他固定相,如芳香相和聚合物,则表现出中间行为。在本文中,主要通过使用log k-log k图来讨论所有这些行为,该图允许对固定相性质进行简单比较。还给出了一些例子来说明这些保留性质。