Pakhomov Sergeui, Shah Nilay, Hanson Penny, Balasubramaniam Saranya, Smith Steven A
Pharmaceutical Care and Health Systems, University of Minnesota, MN, USA.
AMIA Annu Symp Proc. 2008 Nov 6;2008:545-9.
Health related quality of life (HRQOL) is an important variable used for prognosis and measuring outcomes in clinical studies and for quality improvement. We explore the use of a general pur-pose natural language processing system Metamap in combination with Support Vector Machines (SVM) for predicting patient responses on standardized HRQOL assessment instruments from text of physicians notes. We surveyed 669 patients in the Mayo Clinic diabetes registry using two instruments designed to assess functioning: EuroQoL5D and SF36/SD6. Clinical notes for these patients were represented as sets of medical concepts using Metamap. SVM classifiers were trained using various feature selection strategies. The best concordance between the HRQOL instruments and automatic classification was achieved along the pain dimension (positive agreement .76, negative agreement .78, kappa .54) using Metamap. We conclude that clinicians notes may be used to develop a surrogate measure of patients HRQOL status.
健康相关生活质量(HRQOL)是临床研究中用于预后评估、结果测量以及质量改进的重要变量。我们探索将通用自然语言处理系统Metamap与支持向量机(SVM)相结合,用于根据医生记录文本预测患者在标准化HRQOL评估工具上的反应。我们使用两种旨在评估功能的工具(欧洲五维度健康量表(EuroQoL5D)和SF36/SD6)对梅奥诊所糖尿病登记处的669名患者进行了调查。这些患者的临床记录使用Metamap表示为医学概念集。使用各种特征选择策略对支持向量机分类器进行训练。使用Metamap在疼痛维度上实现了HRQOL工具与自动分类之间的最佳一致性(阳性一致性0.76,阴性一致性0.78,kappa值0.54)。我们得出结论,临床医生记录可用于开发患者HRQOL状态的替代测量方法。