Suppr超能文献

迈向重症监护护理记录的自动分类

Towards automated classification of intensive care nursing narratives.

作者信息

Hiissa Marketta, Pahikkala Tapio, Suominen Hanna, Lehtikunnas Tuija, Back Barbro, Karsten Helena, Salanterä Sanna, Salakoski Tapio

机构信息

Turku Centre for Computer Science, Turku, Finland.

出版信息

Stud Health Technol Inform. 2006;124:789-94.

Abstract

Nursing narratives are an important part of patient documentation, but the possibilities to utilize them in the direct care process are limited due to the lack of proper tools. One solution to facilitate the utilization of narrative data could be to classify them according to their content. In this paper, we addressed two issues related to designing an automated classifier: domain experts' agreement on the content of the classes into which the data are to be classified, and the ability of the machine-learning algorithm to perform the classification on an acceptable level. The data we used were a set of Finnish intensive care nursing narratives. By using Cohen's kappa, we assessed the agreement of three nurses on the content of the classes Breathing, Blood Circulation and Pain, and by using the area under ROC curve (AUC), we measured the ability of the Least Squares Support Vector Machine (LS-SVM) algorithm to learn the classification patterns of the nurses. On average, the values of kappa were around 0.8. The agreement was highest in the class Blood Circulation, and lowest in the class Breathing. The LS-SVM algorithm was able to learn the classification patterns of the three nurses on an acceptable level; the values of AUC were generally around 0.85. Our results indicate that one way to develop electronic patient records could be tools that handle the free text in nursing documentation.

摘要

护理记录是患者文档的重要组成部分,但由于缺乏合适的工具,在直接护理过程中利用这些记录的可能性有限。促进叙事数据利用的一种解决方案可能是根据其内容对它们进行分类。在本文中,我们解决了与设计自动分类器相关的两个问题:领域专家对数据要分类的类别内容的一致性,以及机器学习算法在可接受水平上执行分类的能力。我们使用的数据是一组芬兰重症监护护理记录。通过使用科恩kappa系数,我们评估了三名护士在呼吸、血液循环和疼痛类别内容上的一致性,并通过使用ROC曲线下面积(AUC),我们测量了最小二乘支持向量机(LS-SVM)算法学习护士分类模式的能力。平均而言,kappa值约为0.8。在血液循环类别中一致性最高,在呼吸类别中最低。LS-SVM算法能够在可接受水平上学习三名护士的分类模式;AUC值通常约为0.85。我们的结果表明,开发电子病历的一种方法可能是处理护理文档中自由文本的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验