Suppr超能文献

Conical defects in growing sheets.

作者信息

Müller Martin Michael, Amar Martine Ben, Guven Jemal

机构信息

Laboratoire de Physique Statistique de l'Ecole Normale Supérieure (UMR 8550), associé aux Universités Paris 6 et Paris 7 et au CNRS, 24, rue Lhomond, 75005 Paris, France.

出版信息

Phys Rev Lett. 2008 Oct 10;101(15):156104. doi: 10.1103/PhysRevLett.101.156104.

Abstract

A growing or shrinking disc will adopt a conical shape, its intrinsic geometry characterized by a surplus angle phi(e) at the apex. If growth is slow, the cone will find its equilibrium. Whereas this is trivial if phi(e)<or=0, the disc can fold into one of a discrete infinite number of states if phi(e)>0. We construct these states in the regime where bending dominates and determine their energies and how stress is distributed in them. For each state a critical value of phi(e) is identified beyond which the cone touches itself. Before this occurs, all states are stable; the ground state has twofold symmetry.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验