Guven Jemal, Hanna J A, Kahraman Osman, Müller Martin Michael
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, 04510, México D.F., México.
Eur Phys J E Soft Matter. 2013 Sep;36(9):106. doi: 10.1140/epje/i2013-13106-0. Epub 2013 Sep 26.
A flat elastic sheet may contain pointlike conical singularities that carry a metrical "charge" of Gaussian curvature. Adding such elementary defects to a sheet allows one to make many shapes, in a manner broadly analogous to the familiar multipole construction in electrostatics. However, here the underlying field theory is non-linear, and superposition of intrinsic defects is non-trivial as it must respect the immersion of the resulting surface in three dimensions. We consider a "charge-neutral" dipole composed of two conical singularities of opposite sign. Unlike the relatively simple electrostatic case, here there are two distinct stable minima and an infinity of unstable equilibria. We determine the shapes of the minima and evaluate their energies in the thin-sheet regime where bending dominates over stretching. Our predictions are in surprisingly good agreement with experiments on paper sheets.
一个平坦的弹性薄片可能包含点状的锥形奇点,这些奇点携带高斯曲率的度量“电荷”。在薄片中添加此类基本缺陷,能以一种与静电学中常见的多极构造大致类似的方式制作出多种形状。然而,这里的基础场论是非线性的,并且固有缺陷的叠加并非易事,因为它必须考虑所得曲面在三维空间中的浸入情况。我们考虑由两个符号相反的锥形奇点组成的“电荷中性”偶极子。与相对简单的静电情形不同,这里存在两个不同的稳定极小值和无穷多个不稳定平衡点。我们确定极小值的形状,并在弯曲主导拉伸的薄壳区域评估它们的能量。我们的预测与纸张实验结果惊人地吻合。