Suppr超能文献

通过成对序列比较推断系统发育的一个基本限制。

A basic limitation on inferring phylogenies by pairwise sequence comparisons.

作者信息

Steel Mike

机构信息

Allan Wilson Centre for Molecular Ecology and Evolution, Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.

出版信息

J Theor Biol. 2009 Feb 7;256(3):467-72. doi: 10.1016/j.jtbi.2008.10.010. Epub 2008 Oct 22.

Abstract

Distance-based approaches in phylogenetics such as Neighbor-Joining are a fast and popular approach for building trees. These methods take pairs of sequences, and from them construct a value that, in expectation, is additive under a stochastic model of site substitution. Most models assume a distribution of rates across sites, often based on a gamma distribution. Provided the (shape) parameter of this distribution is known, the method can correctly reconstruct the tree. However, if the shape parameter is not known then we show that topologically different trees, with different shape parameters and associated positive branch lengths, can lead to exactly matching distributions on pairwise site patterns between all pairs of taxa. Thus, one could not distinguish between the two trees using pairs of sequences without some prior knowledge of the shape parameter. More surprisingly, this can happen for any choice of distinct shape parameters on the two trees, and thus the result is not peculiar to a particular or contrived selection of the shape parameters. On a positive note, we point out known conditions where identifiability can be restored (namely, when the branch lengths are clocklike, or if methods such as maximum likelihood are used).

摘要

系统发育学中基于距离的方法,如邻接法,是构建树的一种快速且流行的方法。这些方法取成对的序列,并据此构建一个值,在位点替换的随机模型下,该值预期是可加性的。大多数模型假定位点间存在速率分布,通常基于伽马分布。若该分布的(形状)参数已知,此方法就能正确重建树。然而,如果形状参数未知,那么我们表明,具有不同形状参数和相关正分支长度的拓扑不同的树,可能导致所有分类单元对之间的成对位点模式具有完全匹配的分布。因此,在没有关于形状参数的一些先验知识的情况下,无法使用成对序列区分这两棵树。更令人惊讶的是,对于两棵树上不同形状参数的任何选择都可能发生这种情况,因此结果并非特定或人为选择形状参数所特有。从积极的方面来看,我们指出了可恢复可识别性的已知条件(即,当分支长度呈钟形时,或者如果使用最大似然等方法时)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验