Suppr超能文献

人类在学习识别面孔方面惊人的高效性。

The surprisingly high human efficiency at learning to recognize faces.

作者信息

Peterson Matthew F, Abbey Craig K, Eckstein Miguel P

机构信息

Department of Psychology, Vision & Image Understanding Laboratory, University of California, Santa Barbara, CA 93106, USA.

出版信息

Vision Res. 2009 Feb;49(3):301-14. doi: 10.1016/j.visres.2008.10.014. Epub 2008 Dec 16.

Abstract

We investigated the ability of humans to optimize face recognition performance through rapid learning of individual relevant features. We created artificial faces with discriminating visual information heavily concentrated in single features (nose, eyes, chin or mouth). In each of 2500 learning blocks a feature was randomly selected and retained over the course of four trials, during which observers identified randomly sampled, noisy face images. Observers learned the discriminating feature through indirect feedback, leading to large performance gains. Performance was compared to a learning Bayesian ideal observer, resulting in unexpectedly high learning compared to previous studies with simpler stimuli. We explore various explanations and conclude that the higher learning measured with faces cannot be driven by adaptive eye movement strategies but can be mostly accounted for by suboptimalities in human face discrimination when observers are uncertain about the discriminating feature. We show that an initial bias of humans to use specific features to perform the task even though they are informed that each of four features is equally likely to be the discriminatory feature would lead to seemingly supra-optimal learning. We also examine the possibility of inefficient human integration of visual information across the spatially distributed facial features. Together, the results suggest that humans can show large performance improvement effects in discriminating faces as they learn to identify the feature containing the discriminatory information.

摘要

我们研究了人类通过快速学习个体相关特征来优化人脸识别性能的能力。我们创建了人工面孔,其具有区分性的视觉信息高度集中在单个特征(鼻子、眼睛、下巴或嘴巴)上。在2500个学习块中的每一个中,随机选择一个特征并在四次试验过程中保持不变,在此期间观察者识别随机采样的、有噪声的面部图像。观察者通过间接反馈学习区分性特征,从而带来了显著的性能提升。将性能与学习型贝叶斯理想观察者进行比较,结果显示与之前使用更简单刺激的研究相比,学习效果出乎意料地高。我们探讨了各种解释,并得出结论:用人脸测量出的更高学习效果并非由适应性眼动策略驱动,而是在观察者对区分性特征不确定时,主要可归因于人脸辨别中的次优性。我们表明,即使被告知四个特征中的每一个成为区分性特征的可能性相同,人类在执行任务时使用特定特征的初始偏差仍会导致看似超优的学习。我们还研究了人类在整合跨空间分布的面部特征的视觉信息方面效率低下的可能性。总之,结果表明,随着人类学会识别包含区分性信息的特征,他们在辨别面孔方面可以表现出显著的性能提升效果。

相似文献

1
The surprisingly high human efficiency at learning to recognize faces.
Vision Res. 2009 Feb;49(3):301-14. doi: 10.1016/j.visres.2008.10.014. Epub 2008 Dec 16.
2
Multiple perceptual strategies used by macaque monkeys for face recognition.
Anim Cogn. 2009 Jan;12(1):155-67. doi: 10.1007/s10071-008-0179-7. Epub 2008 Sep 12.
3
Learning optimal eye movements to unusual faces.
Vision Res. 2014 Jun;99:57-68. doi: 10.1016/j.visres.2013.11.005. Epub 2013 Nov 26.
4
Eye movement differences when recognising and learning moving and static faces.
Q J Exp Psychol (Hove). 2025 Apr;78(4):744-765. doi: 10.1177/17470218241252145. Epub 2024 May 14.
5
Learning to recognize face shapes through serial exploration.
Exp Brain Res. 2013 May;226(4):513-23. doi: 10.1007/s00221-013-3463-y. Epub 2013 Mar 7.
6
Intact rapid detection of fearful faces in the absence of the amygdala.
Nat Neurosci. 2009 Oct;12(10):1224-5. doi: 10.1038/nn.2380. Epub 2009 Aug 30.
7
Perception and Processing of Faces in the Human Brain Is Tuned to Typical Feature Locations.
J Neurosci. 2016 Sep 7;36(36):9289-302. doi: 10.1523/JNEUROSCI.4131-14.2016.
8
The significance of hair for face recognition.
PLoS One. 2012;7(3):e34144. doi: 10.1371/journal.pone.0034144. Epub 2012 Mar 26.
9
Fast updating of stimulus history reveals weak internal representations of faces in autism.
Autism Res. 2024 Nov;17(11):2232-2243. doi: 10.1002/aur.3236. Epub 2024 Sep 30.
10
Hometown size affects the processing of naturalistic face variability.
Vision Res. 2017 Dec;141:228-236. doi: 10.1016/j.visres.2016.12.005. Epub 2017 Jan 2.

引用本文的文献

1
Population codes enable learning from few examples by shaping inductive bias.
Elife. 2022 Dec 16;11:e78606. doi: 10.7554/eLife.78606.
3
Learning optimal eye movements to unusual faces.
Vision Res. 2014 Jun;99:57-68. doi: 10.1016/j.visres.2013.11.005. Epub 2013 Nov 26.

本文引用的文献

1
2
Spatial summation of face information.
J Vis. 2006 Sep 28;6(10):1117-25. doi: 10.1167/6.10.11.
5
Holistic processing is finely tuned for faces of one's own race.
Psychol Sci. 2006 Jul;17(7):608-15. doi: 10.1111/j.1467-9280.2006.01752.x.
6
When feature information comes first! Early processing of inverted faces.
Perception. 2005;34(9):1117-34. doi: 10.1068/p5192.
7
8
Gaze fixation and the neural circuitry of face processing in autism.
Nat Neurosci. 2005 Apr;8(4):519-26. doi: 10.1038/nn1421. Epub 2005 Mar 6.
10
Early and rapid perceptual learning.
Nat Neurosci. 2004 Oct;7(10):1055-6. doi: 10.1038/nn1315. Epub 2004 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验