Belenky Peter, Christensen Kathryn C, Gazzaniga Francesca, Pletnev Alexandre A, Brenner Charles
Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756.
Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756.
J Biol Chem. 2009 Jan 2;284(1):158-164. doi: 10.1074/jbc.M807976200. Epub 2008 Nov 11.
NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.
烟酰胺腺嘌呤二核苷酸(NAD+)是氢化物转移酶的辅酶,也是ADP - 核糖转移酶和去乙酰化酶(与酵母Sir2相关的III型蛋白质赖氨酸去乙酰化酶)的必需底物。用烟酰胺核糖补充酵母细胞可延长复制寿命,并通过增加净NAD+合成来增强Sir2依赖性基因沉默。烟酰胺核糖通过烟酰胺核糖激酶途径以及通过将核苷分解为烟酰胺碱基随后进行烟酰胺补救所启动的途径来提高NAD+水平。遗传证据表明,尿苷水解酶、嘌呤核苷磷酸化酶和甲硫腺苷磷酸化酶是酵母中不依赖Nrk的烟酰胺核糖利用所必需的。在这里,我们表明哺乳动物嘌呤核苷磷酸化酶而非甲硫腺苷磷酸化酶负责哺乳动物中不依赖烟酰胺核糖激酶的烟酰胺核糖利用。我们证明所谓的尿苷水解酶作为烟酰胺核糖水解酶的活性比作为尿苷水解酶的活性高100倍,并且尿苷水解酶和哺乳动物嘌呤核苷磷酸化酶可裂解烟酸核糖,而酵母磷酸化酶对烟酸核糖几乎没有活性。最后,我们表明酵母对烟酸核糖的利用很大程度上依赖于尿苷水解酶和烟酰胺核糖激酶,并且通过酯修饰可提高烟酸核糖的生物利用度。