Suppr超能文献

真菌和哺乳动物中的烟酰胺核糖苷和烟酸核糖苷补救途径。Urh1和嘌呤核苷磷酸化酶在NAD⁺代谢中发挥作用的定量基础。

Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

作者信息

Belenky Peter, Christensen Kathryn C, Gazzaniga Francesca, Pletnev Alexandre A, Brenner Charles

机构信息

Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756.

Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756.

出版信息

J Biol Chem. 2009 Jan 2;284(1):158-164. doi: 10.1074/jbc.M807976200. Epub 2008 Nov 11.

Abstract

NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

摘要

烟酰胺腺嘌呤二核苷酸(NAD+)是氢化物转移酶的辅酶,也是ADP - 核糖转移酶和去乙酰化酶(与酵母Sir2相关的III型蛋白质赖氨酸去乙酰化酶)的必需底物。用烟酰胺核糖补充酵母细胞可延长复制寿命,并通过增加净NAD+合成来增强Sir2依赖性基因沉默。烟酰胺核糖通过烟酰胺核糖激酶途径以及通过将核苷分解为烟酰胺碱基随后进行烟酰胺补救所启动的途径来提高NAD+水平。遗传证据表明,尿苷水解酶、嘌呤核苷磷酸化酶和甲硫腺苷磷酸化酶是酵母中不依赖Nrk的烟酰胺核糖利用所必需的。在这里,我们表明哺乳动物嘌呤核苷磷酸化酶而非甲硫腺苷磷酸化酶负责哺乳动物中不依赖烟酰胺核糖激酶的烟酰胺核糖利用。我们证明所谓的尿苷水解酶作为烟酰胺核糖水解酶的活性比作为尿苷水解酶的活性高100倍,并且尿苷水解酶和哺乳动物嘌呤核苷磷酸化酶可裂解烟酸核糖,而酵母磷酸化酶对烟酸核糖几乎没有活性。最后,我们表明酵母对烟酸核糖的利用很大程度上依赖于尿苷水解酶和烟酰胺核糖激酶,并且通过酯修饰可提高烟酸核糖的生物利用度。

相似文献

4
Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.
J Biol Chem. 2008 Mar 28;283(13):8075-9. doi: 10.1074/jbc.C800021200. Epub 2008 Feb 6.
6
Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8563-8. doi: 10.1073/pnas.0401057101. Epub 2004 May 18.
7
Vitamins and aging: pathways to NAD+ synthesis.
Cell. 2007 May 4;129(3):453-4. doi: 10.1016/j.cell.2007.04.023.
8
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.
J Biol Chem. 2002 Nov 22;277(47):45099-107. doi: 10.1074/jbc.M205670200. Epub 2002 Sep 23.
9
Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells.
J Biol Chem. 2022 Dec;298(12):102615. doi: 10.1016/j.jbc.2022.102615. Epub 2022 Oct 18.
10
Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition.
Mol Cell. 2005 Feb 18;17(4):595-601. doi: 10.1016/j.molcel.2004.12.032.

引用本文的文献

1
Emerging strategies, applications and challenges of targeting NAD in the clinic.
Nat Aging. 2025 Sep 9. doi: 10.1038/s43587-025-00947-6.
2
The role of NAD metabolism and its modulation of mitochondria in aging and disease.
NPJ Metab Health Dis. 2025 Jun 18;3(1):26. doi: 10.1038/s44324-025-00067-0.
3
Nicotinic acid riboside maintains NAD homeostasis and ameliorates aging-associated NAD decline.
Cell Metab. 2025 Jul 1;37(7):1499-1514.e4. doi: 10.1016/j.cmet.2025.04.007. Epub 2025 May 1.
5
Nicotinamide: A Multifaceted Molecule in Skin Health and Beyond.
Medicina (Kaunas). 2025 Feb 1;61(2):254. doi: 10.3390/medicina61020254.
6
CD38 mediates nicotinamide mononucleotide base exchange to yield nicotinic acid mononucleotide.
J Biol Chem. 2025 Mar;301(3):108248. doi: 10.1016/j.jbc.2025.108248. Epub 2025 Jan 31.
7
Mitochondria as Nutritional Targets to Maintain Muscle Health and Physical Function During Ageing.
Sports Med. 2024 Sep;54(9):2291-2309. doi: 10.1007/s40279-024-02072-7. Epub 2024 Jul 26.
10
Inhibitors of NAD Production in Cancer Treatment: State of the Art and Perspectives.
Int J Mol Sci. 2024 Feb 8;25(4):2092. doi: 10.3390/ijms25042092.

本文引用的文献

1
Transition state analogues in quorum sensing and SAM recycling.
Nucleic Acids Symp Ser (Oxf). 2008(52):75-6. doi: 10.1093/nass/nrn038.
2
Enzymology of mammalian NAD metabolism in health and disease.
Front Biosci. 2008 May 1;13:6135-54. doi: 10.2741/3143.
4
Sirtuins in aging and disease.
Cold Spring Harb Symp Quant Biol. 2007;72:483-8. doi: 10.1101/sqb.2007.72.024.
5
Structural basis for substrate specificity in group I nucleoside hydrolases.
Biochemistry. 2008 Apr 15;47(15):4418-26. doi: 10.1021/bi702448s. Epub 2008 Mar 25.
6
Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.
J Biol Chem. 2008 Mar 28;283(13):8075-9. doi: 10.1074/jbc.C800021200. Epub 2008 Feb 6.
9
Nicotinamide riboside kinase structures reveal new pathways to NAD+.
PLoS Biol. 2007 Oct 2;5(10):e263. doi: 10.1371/journal.pbio.0050263.
10
Assimilation of NAD(+) precursors in Candida glabrata.
Mol Microbiol. 2007 Oct;66(1):14-25. doi: 10.1111/j.1365-2958.2007.05886.x. Epub 2007 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验