Lu Shu-Ping, Kato Michiko, Lin Su-Ju
From the Department of Microbiology, University of California, Davis, California 95616.
From the Department of Microbiology, University of California, Davis, California 95616.
J Biol Chem. 2009 Jun 19;284(25):17110-17119. doi: 10.1074/jbc.M109.004010. Epub 2009 May 5.
NAD(+) (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD(+) metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD(+) metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD(+)-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD(+) metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD(+) precursors. Together, our studies provide a molecular basis for how NAD(+) homeostasis factors confer metabolic flexibility.
烟酰胺腺嘌呤二核苷酸(NAD(+))是一种必需的辅因子,参与包括热量限制介导的寿命延长在内的各种生物过程。已证明给予烟酰胺核糖(NmR)可改善酵母和哺乳动物细胞中与异常NAD(+)代谢相关的缺陷。然而,内源性NmR的生物学作用仍不清楚。在此我们证明,挽救内源性NmR是NAD(+)代谢的一个组成部分。平衡的NmR挽救循环对于酵母中热量限制诱导的寿命延长和应激抗性至关重要。我们的结果还表明,经典挽救循环和NmR挽救分支之间的吡啶核苷酸通量分配可能受NAD(+)依赖性Sir2脱乙酰酶调节。此外,还发现了导致烟酸单核苷酸和烟酸核糖产生的两个新的脱酰胺步骤,这进一步突出了NAD(+)代谢的复杂性和灵活性。此外,细胞外烟酰胺单核苷酸的利用需要先由周质磷酸酶Pho5介导转化为NmR。因此,转化为NmR可能代表了一种运输和同化大型不可渗透NAD(+)前体的策略。总之,我们的研究为NAD(+)稳态因子如何赋予代谢灵活性提供了分子基础。