Suppr超能文献

大规模动物细胞培养中的反应堆工程。

Reactor engineering in large scale animal cell culture.

机构信息

Centre for Bioprocess Engineering, The University of Birmingham, Birmingham, B15 2TT, UK,

出版信息

Cytotechnology. 2006 Mar;50(1-3):9-33. doi: 10.1007/s10616-006-9005-8. Epub 2006 Jun 20.

Abstract

This article mainly addresses the issues associated with the engineering of large-scale free suspension culture in agitated bioreactors >10,000 L because they have become the system of choice industrially. It is particularly concerned with problems that become increasingly important as the scale increases. However, very few papers have been written that are actually based on such large-scale studies and the few that do rarely address any of the issues quantitatively. Hence, it is necessary very often to extrapolate from small-scale work and this review tries to pull the two types of study together. It is shown that 'shear sensitivity' due to agitation and bursting bubbles is no longer considered a major problem. Homogeneity becomes increasingly important with respect to pH and nutrients at the largest scale and sub-surface feeding is recommended despite 'cleaning in place' concerns. There are still major questions with cell retention/recycle systems at these scales, either because of fouling, of capacity or of potential and different 'shear sensitivity' questions. Fed-batch operation gives rise to cell densities that have led to the use of oxygen and enriched air to meet oxygen demands. This strategy, in turn, gives rise to a CO(2) evolution rate that impacts on pH control, pCO(2) and osmolality. These interactions are difficult to resolve but if higher sparge and agitation intensities could be used to achieve the necessary oxygen transfer, the problem would largely disappear. Thus, the perception of 'shear sensitivity' is still impacting on the development of animal cell culture at the commercial scale. Microcarrier culture is also briefly addressed. Finally, some recommendations for bioreactor configuration and operating strategy are given.

摘要

本文主要讨论了在搅拌生物反应器(>10,000 L)中进行大规模悬浮培养工程的问题,因为这些生物反应器已经成为工业上的首选系统。本文特别关注随着规模的增加而变得越来越重要的问题。然而,实际上基于这种大规模研究的论文很少,而且很少有论文从定量的角度解决任何问题。因此,通常需要从小规模工作中推断,本综述试图将这两种类型的研究结合起来。结果表明,由于搅拌和气泡破裂引起的“剪切敏感性”不再是一个主要问题。在最大规模下,pH 值和营养物质的均一性变得越来越重要,尽管存在“就地清洗”的问题,但建议采用亚表面进料。在这些规模下,细胞保留/再循环系统仍然存在重大问题,要么是由于结垢、容量或潜在的“剪切敏感性”问题。分批补料操作会导致细胞密度增加,从而需要使用氧气和富氧空气来满足氧气需求。这种策略反过来又会导致 CO(2)释放速率影响 pH 控制、pCO(2)和渗透压。这些相互作用很难解决,但如果可以使用更高的喷气量和搅拌强度来实现必要的氧气传递,那么这个问题将在很大程度上得到解决。因此,对“剪切敏感性”的认识仍然影响着动物细胞培养在商业规模上的发展。微载体培养也简要提及。最后,给出了一些关于生物反应器配置和操作策略的建议。

相似文献

1
Reactor engineering in large scale animal cell culture.
Cytotechnology. 2006 Mar;50(1-3):9-33. doi: 10.1007/s10616-006-9005-8. Epub 2006 Jun 20.
2
The potential of hydrodynamic damage to animal cells of industrial relevance: current understanding.
Cytotechnology. 2011 Oct;63(5):445-60. doi: 10.1007/s10616-011-9368-3. Epub 2011 Jul 22.
3
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
4
Scale-up analysis for a CHO cell culture process in large-scale bioreactors.
Biotechnol Bioeng. 2009 Jul 1;103(4):733-46. doi: 10.1002/bit.22287.
5
Disposable bioreactor for cell culture using wave-induced agitation.
Cytotechnology. 1999 Jul;30(1-3):149-58. doi: 10.1023/A:1008025016272.
6
Agitation, aeration and perfusion modules for cell culture bioreactors.
Cytotechnology. 1993;11(3):233-44. doi: 10.1007/BF00749874.
7
Engineering considerations for process development in mammalian cell cultivation.
Curr Pharm Biotechnol. 2010 Jan;11(1):103-12. doi: 10.2174/138920110790725320.
8
Reactor design for large scale suspension animal cell culture.
Cytotechnology. 1999 May;29(3):177-205. doi: 10.1023/A:1008008021481.
9
Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions.
Biotechnol Bioeng. 1999;66(3):171-9. doi: 10.1002/(sici)1097-0290(1999)66:3<171::aid-bit5>3.0.co;2-t.
10
Sparging and agitation-induced injury of cultured animals cells: Do cell-to-bubble interactions in the bulk liquid injure cells?
Biotechnol Bioeng. 1996 Aug 20;51(4):399-409. doi: 10.1002/(SICI)1097-0290(19960820)51:4<399::AID-BIT3>3.0.CO;2-D.

引用本文的文献

1
Engineering Characterization of Small-Scale Bioreactors for Large-Scale hiPSC Production.
Biotechnol J. 2025 Sep;20(9):e70106. doi: 10.1002/biot.70106.
2
Scalable, High-Density Expansion of Human Mesenchymal Stem Cells on Microcarriers Using the Bach Impeller in Stirred-Tank Reactors.
Biotechnol Bioeng. 2025 Oct;122(10):2803-2818. doi: 10.1002/bit.70025. Epub 2025 Jul 17.
5
Analytical and computational studies predict negligible risk of cell death from eddy generation off flat surfaces in cell culture flow systems.
Front Bioeng Biotechnol. 2024 Aug 7;12:1340653. doi: 10.3389/fbioe.2024.1340653. eCollection 2024.
6
A perspective-driven and technical evaluation of machine learning in bioreactor scale-up: A case-study for potential model developments.
Eng Life Sci. 2024 Mar 20;24(7):e2400023. doi: 10.1002/elsc.202400023. eCollection 2024 Jul.
9
Analyzing of hydrodynamic stress and mass transfer requirements of a fermentation process carried out in a coaxial bioreactor: a scale-up study.
Bioprocess Biosyst Eng. 2024 May;47(5):633-649. doi: 10.1007/s00449-024-02990-w. Epub 2024 Apr 1.
10
Seed Train Optimization in Microcarrier-Based Cell Culture Post In Situ Cell Detachment through Scale-Down Hybrid Modeling.
Bioengineering (Basel). 2024 Mar 9;11(3):268. doi: 10.3390/bioengineering11030268.

本文引用的文献

2
CO(2) in large-scale and high-density CHO cell perfusion culture.
Cytotechnology. 1996 Jan;22(1-3):65-78. doi: 10.1007/BF00353925.
4
Engineering challenges in high density cell culture systems.
Cytotechnology. 1996 Jan;22(1-3):3-16. doi: 10.1007/BF00353919.
5
Reactor design for large scale suspension animal cell culture.
Cytotechnology. 1999 May;29(3):177-205. doi: 10.1023/A:1008008021481.
6
Lethal events during gas sparging in animal cell culture.
Biotechnol Bioeng. 1991 Mar 5;37(5):484-90. doi: 10.1002/bit.260370510.
8
Effects of microcarrier concentration in animal cell culture.
Biotechnol Bioeng. 1988 Oct 5;32(8):975-82. doi: 10.1002/bit.260320805.
9
Oxygen transfer in animal cell culture medium.
Biotechnol Bioeng. 1987 Aug 20;30(3):368-73. doi: 10.1002/bit.260300307.
10
Hydrodynamic effects on animal cells grown in microcarrier cultures.
Biotechnol Bioeng. 1987 Jan;29(1):130-41. doi: 10.1002/bit.260290117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验