Process Development Department, Chiron Corporation, 4560 Horton St., 94608, Emeryville, CA, U.S.A..
Cytotechnology. 1996 Jan;22(1-3):65-78. doi: 10.1007/BF00353925.
Productivity in a CHO perfusion culture reactor was maximized when pCO(2) was maintained in the range of 30-76 mm Hg. Higher levels of pCO(2) (> 150 mm Hg) resulted in CHO cell growth inhibition and dramatic reduction in productivity. We measured the oxygen utilization and CO(2) production rates for CHO cells in perfusion culture at 5.55×10(-17) mol cell(-1) sec(-1) and 5.36×10(-17) mol cell(-1) sec(-1) respectively. A simple method to directly measure the mass transfer coefficients for oxygen and carbon dioxide was also developed. For a 500 L bioreactor using pure oxygen sparge at 0.002 VVM from a microporous frit sparger, the overall apparent transfer rates (k(L)a+k(A)A) for oxygen and carbon dioxide were 0.07264 min(-1) and 0.002962 min(-1) respectively. Thus, while a very low flow rate of pure oxygen microbubbles would be adequate to meet oxygen supply requirements for up to 2.1×10(7) cells/mL, the low CO(2) removal efficiency would limit culture density to only 2.4×10(6) cells/mL. An additional model was developed to predict the effect of bubble size on oxygen and CO(2) transfer rates. If pure oxygen is used in both the headspace and sparge, then the sparging rate can be minimized by the use of bubbles in the size range of 2-3 mm. For bubbles in this size range, the ratio of oxygen supply to carbon dioxide removal rates is matched to the ratio of metabolic oxygen utilization and carbon dioxide generation rates. Using this strategy in the 500 L reactor, we predict that dissolved oxygen and CO(2) levels can be maintained in the range to support maximum productivity (40% DO, 76 mm Hg pCO(2)) for a culture at 10(7) cells/mL, and with a minimum sparge rate of 0.006 vessel volumes per minute.A = volumetric agitated gas-liquid interfacial area at the top of the liquid, 1/mB = cell broth bleeding rate from the vessel, L/minCER = carbon dioxide evolution rate in the bioreactor, mol/min[CO(2)] = dissolved CO(2) concentration in liquid, MCO(2) = CO(2) concentration in equilibrium with sparger gas, MCO(2) = CO(2) concentration in equilibrium with headspace gas, MCO(2)(1) = dissolved carbon dioxide molecule in water[C(T)] = total carbonic species concentration in bioreactor medium, MC(T) = total carbonic species concentration in feed medium, MD = bioreactor diameter, mD(I) = impeller diameter, mD(b) = the initial delivered bubble diameter, mF = fresh medium feeding rate, L/minH(L) = liquid height in the vessel, mk(A) = carbon dioxide transfer coefficient at liquid surface, m/mink (infA) (supO) = oxygen transfer coefficient at liquid surface, m/min.
当二氧化碳分压(pCO₂)维持在 30-76mmHg 范围内时,CHO 灌注培养反应器的生产力达到最大值。较高的 pCO₂(>150mmHg)会导致 CHO 细胞生长抑制和生产力大幅下降。我们测量了在灌注培养条件下 CHO 细胞的耗氧率和二氧化碳生成率,分别为 5.55×10(-17)mol 细胞(-1)sec(-1)和 5.36×10(-17)mol 细胞(-1)sec(-1)。还开发了一种直接测量氧和二氧化碳传质系数的简单方法。对于使用微孔分散器在 0.002VVM 下从纯氧鼓泡的 500L 生物反应器,氧气和二氧化碳的总表观传质系数(k(L)a+k(A)A)分别为 0.07264min(-1)和 0.002962min(-1)。因此,尽管非常低流速的纯氧气微泡足以满足高达 2.1×10(7)个细胞/mL 的供氧需求,但低二氧化碳去除效率将限制培养密度仅为 2.4×10(6)个细胞/mL。还开发了一个额外的模型来预测气泡大小对氧气和二氧化碳传质速率的影响。如果在顶空和鼓泡中都使用纯氧,则可以通过使用 2-3mm 大小的气泡来最小化鼓泡速率。对于这种大小范围的气泡,供氧与二氧化碳去除速率的比值与代谢耗氧与二氧化碳生成速率的比值相匹配。在 500L 反应器中使用这种策略,我们预测溶解氧和二氧化碳水平可以维持在支持最大生产力(40%DO,76mmHg pCO₂)的范围内,用于 10(7)个细胞/mL 的培养,并且最小鼓泡速率为每分钟 0.006 容器体积。A = 液体顶部的搅拌气体-液体界面的体积,1/mB = 从容器中排出的细胞培养液的流血率,L/minCER = 生物反应器中的二氧化碳释放速率,mol/min[CO₂] = 液体中的溶解二氧化碳浓度,MCO₂ = 与鼓泡气体平衡的 CO₂浓度,MCO₂ = 与顶空气体平衡的 CO₂浓度,MCO₂(1) = 水中溶解的二氧化碳分子[C(T)] = 生物反应器介质中的总碳酸物种浓度,MC(T) = 进料介质中的总碳酸物种浓度,MD = 生物反应器直径,mD(I) = 搅拌器直径,mD(b) = 初始输送气泡直径,mF = 新鲜培养基进料率,L/minH(L) = 容器中的液体高度,mk(A) = 液体表面的二氧化碳传递系数,m/mink(infA)(supO) = 液体表面的氧气传递系数,m/min。