Suppr超能文献

单层循环神经网络在约束拟凸优化中的应用及其在动态投资组合优化中的应用。

A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

机构信息

School of Automation, Southeast University, Nanjing 210096, China.

出版信息

Neural Netw. 2012 Feb;26:99-109. doi: 10.1016/j.neunet.2011.09.001. Epub 2011 Sep 16.

Abstract

In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed.

摘要

本文提出了一种用于求解带线性等式和边界约束的伪凸优化问题的单层递归神经网络。与现有的优化神经网络(例如投影神经网络)相比,所提出的神经网络能够解决更一般的带有等式和边界约束的伪凸优化问题。此外,它还能够解决约束分式规划问题作为特例。只要模型中设计的参数大于导出的下界,就可以保证所提出的神经网络的状态变量的收敛达到最优解。通过模拟结果的数值例子说明了所提出的神经网络的有效性和特点。此外,还讨论了一个用于动态投资组合优化的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验