Suppr超能文献

用于约束非光滑不变凸优化的单层递归神经网络。

A one-layer recurrent neural network for constrained nonsmooth invex optimization.

作者信息

Li Guocheng, Yan Zheng, Wang Jun

机构信息

Department of Mathematics, Beijing Information Science and Technology University, Beijing, China.

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.

出版信息

Neural Netw. 2014 Feb;50:79-89. doi: 10.1016/j.neunet.2013.11.007. Epub 2013 Nov 19.

Abstract

Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network.

摘要

不变凸性是非凸优化中的一个重要概念。本文基于精确罚函数法,提出了一种用于求解约束非光滑不变凸优化问题的单层递归神经网络。本文证明,对于足够大的罚参数,所提出神经网络的任何状态都全局收敛到约束不变凸优化问题的最优解集。此外,如果目标函数和约束函数是伪凸的,则任何神经状态都全局收敛到唯一最优解。而且,任何神经状态都在有限时间内全局收敛到可行域,并在之后保持在该可行域内。还估计了罚参数和收敛时间的下界。给出了两个数值例子来说明所提出神经网络的性能。

相似文献

1
A one-layer recurrent neural network for constrained nonsmooth invex optimization.
Neural Netw. 2014 Feb;50:79-89. doi: 10.1016/j.neunet.2013.11.007. Epub 2013 Nov 19.
2
A one-layer recurrent neural network for constrained nonconvex optimization.
Neural Netw. 2015 Jan;61:10-21. doi: 10.1016/j.neunet.2014.09.009. Epub 2014 Sep 28.
3
A One-Layer Recurrent Neural Network for Pseudoconvex Optimization Problems With Equality and Inequality Constraints.
IEEE Trans Cybern. 2017 Oct;47(10):3063-3074. doi: 10.1109/TCYB.2016.2567449. Epub 2016 May 24.
4
A one-layer recurrent neural network for constrained nonsmooth optimization.
IEEE Trans Syst Man Cybern B Cybern. 2011 Oct;41(5):1323-33. doi: 10.1109/TSMCB.2011.2140395. Epub 2011 May 2.
6
A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints.
IEEE Trans Neural Netw Learn Syst. 2013 May;24(5):812-24. doi: 10.1109/TNNLS.2013.2244908.
7
A recurrent neural network for solving a class of generalized convex optimization problems.
Neural Netw. 2013 Aug;44:78-86. doi: 10.1016/j.neunet.2013.03.010. Epub 2013 Mar 25.
8
Subgradient-based neural networks for nonsmooth nonconvex optimization problems.
IEEE Trans Neural Netw. 2009 Jun;20(6):1024-38. doi: 10.1109/TNN.2009.2016340. Epub 2009 May 19.
9
Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation.
IEEE Trans Neural Netw Learn Syst. 2014 Mar;25(3):545-56. doi: 10.1109/TNNLS.2013.2278427.
10
A neurodynamic approach to nonlinear optimization problems with affine equality and convex inequality constraints.
Neural Netw. 2019 Jan;109:147-158. doi: 10.1016/j.neunet.2018.10.010. Epub 2018 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验