Suppr超能文献

通过弹性网络模型揭示核糖体通道的集体动力学

Collective dynamics of the ribosomal tunnel revealed by elastic network modeling.

作者信息

Kurkcuoglu Ozge, Kurkcuoglu Zeynep, Doruker Pemra, Jernigan Robert L

机构信息

Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342 Bebek, Istanbul, Turkey.

出版信息

Proteins. 2009 Jun;75(4):837-45. doi: 10.1002/prot.22292.

Abstract

The collective dynamics of the nascent polypeptide exit tunnel are investigated with the computationally efficient elastic network model using normal mode analysis. The calculated normal modes are considered individually and in linear combinations with different coefficients mimicking the phase angles between modes, in order to follow the mechanistic motions of tunnel wall residues. The low frequency fluctuations indicate three distinct regions along the tunnel-the entrance, the neck, and the exit-each having distinctly different domain motions. Generally, the lining of the entrance region moves in the exit direction, with the exit region having significantly larger motions, but in a perpendicular direction, whereas the confined neck region has rotational motions. Especially the universally conserved extensions of ribosomal proteins L4 and L22 located at the narrowest and mechanistically strategic region of tunnel undergo generally anti- or non-correlated motions, which may have an important role in nascent polypeptide gating mechanism. These motions appear to be sufficiently robust so as to be unaffected by the presence of a peptide chain in the tunnel.

摘要

利用计算效率高的弹性网络模型和简正模式分析,研究了新生多肽出口通道的集体动力学。分别考虑计算得到的简正模式,并将其与不同系数进行线性组合,以模拟模式之间的相位角,从而追踪通道壁残基的机械运动。低频波动表明通道沿三个不同区域——入口、颈部和出口——每个区域具有明显不同的结构域运动。一般来说,入口区域的内衬沿出口方向移动,出口区域的运动明显更大,但方向垂直,而受限的颈部区域有旋转运动。特别是位于通道最窄和机械关键区域的核糖体蛋白L4和L22的普遍保守延伸通常经历反相关或非相关运动,这可能在新生多肽门控机制中起重要作用。这些运动似乎足够稳健,不受通道中肽链存在的影响。

相似文献

1
Collective dynamics of the ribosomal tunnel revealed by elastic network modeling.
Proteins. 2009 Jun;75(4):837-45. doi: 10.1002/prot.22292.
2
Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome.
Biophys J. 2008 Dec 15;95(12):5962-73. doi: 10.1529/biophysj.108.134890. Epub 2008 Oct 20.
3
Ribosome Mechanics Informs about Mechanism.
J Mol Biol. 2016 Feb 27;428(5 Pt A):802-810. doi: 10.1016/j.jmb.2015.12.003. Epub 2015 Dec 11.
5
Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit.
J Mol Biol. 2019 Mar 29;431(7):1426-1439. doi: 10.1016/j.jmb.2019.02.002. Epub 2019 Feb 10.
6
Proteins at the polypeptide tunnel exit of the yeast mitochondrial ribosome.
J Biol Chem. 2010 Jun 18;285(25):19022-8. doi: 10.1074/jbc.M110.113837. Epub 2010 Apr 19.
7
Side-chain recognition and gating in the ribosome exit tunnel.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16549-54. doi: 10.1073/pnas.0801795105. Epub 2008 Oct 22.
9
Structural insight into the role of the ribosomal tunnel in cellular regulation.
Nat Struct Biol. 2003 May;10(5):366-70. doi: 10.1038/nsb915.
10
The ribosome structure controls and directs mRNA entry, translocation and exit dynamics.
Phys Biol. 2008 Nov 24;5(4):046005. doi: 10.1088/1478-3975/5/4/046005.

引用本文的文献

1
The role of ribosomal protein networks in ribosome dynamics.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1308.
2
Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome.
Nucleic Acids Res. 2023 Jan 25;51(2):919-934. doi: 10.1093/nar/gkac1211.
4
Normal Mode Analysis as a Routine Part of a Structural Investigation.
Molecules. 2019 Sep 10;24(18):3293. doi: 10.3390/molecules24183293.
6
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
7
ClustENM: ENM-Based Sampling of Essential Conformational Space at Full Atomic Resolution.
J Chem Theory Comput. 2016 Sep 13;12(9):4549-62. doi: 10.1021/acs.jctc.6b00319. Epub 2016 Aug 18.
9
Distributions of experimental protein structures on coarse-grained free energy landscapes.
J Chem Phys. 2015 Dec 28;143(24):243153. doi: 10.1063/1.4937940.
10
Ribosome Mechanics Informs about Mechanism.
J Mol Biol. 2016 Feb 27;428(5 Pt A):802-810. doi: 10.1016/j.jmb.2015.12.003. Epub 2015 Dec 11.

本文引用的文献

1
Structure of the 70S ribosome complexed with mRNA and tRNA.
Science. 2006 Sep 29;313(5795):1935-42. doi: 10.1126/science.1131127. Epub 2006 Sep 7.
2
Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES.
Mol Syst Biol. 2006;2:36. doi: 10.1038/msb4100075. Epub 2006 Jul 4.
3
The geometry of the ribosomal polypeptide exit tunnel.
J Mol Biol. 2006 Jul 21;360(4):893-906. doi: 10.1016/j.jmb.2006.05.023. Epub 2006 May 30.
4
Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps.
Annu Rev Biophys Biomol Struct. 2006;35:299-317. doi: 10.1146/annurev.biophys.35.040405.101950.
5
Ribosome exit tunnel can entropically stabilize alpha-helices.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18956-61. doi: 10.1073/pnas.0508234102. Epub 2005 Dec 15.
6
Folding zones inside the ribosomal exit tunnel.
Nat Struct Mol Biol. 2005 Dec;12(12):1123-9. doi: 10.1038/nsmb1021. Epub 2005 Nov 20.
7
Structure of the E. coli protein-conducting channel bound to a translating ribosome.
Nature. 2005 Nov 17;438(7066):318-24. doi: 10.1038/nature04133.
8
Structures of the bacterial ribosome at 3.5 A resolution.
Science. 2005 Nov 4;310(5749):827-34. doi: 10.1126/science.1117230.
9
Comparison of tRNA motions in the free and ribosomal bound structures.
Biophys J. 2005 Nov;89(5):3399-409. doi: 10.1529/biophysj.105.064840. Epub 2005 Aug 19.
10
Representing receptor flexibility in ligand docking through relevant normal modes.
J Am Chem Soc. 2005 Jul 6;127(26):9632-40. doi: 10.1021/ja042260c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验