Suppr超能文献

圆柱形疏水纳米孔中氨基酸侧链之间的相互作用及其在肽稳定性方面的应用。

Interactions between amino acid side chains in cylindrical hydrophobic nanopores with applications to peptide stability.

作者信息

Vaitheeswaran S, Thirumalai D

机构信息

Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17636-41. doi: 10.1073/pnas.0803990105. Epub 2008 Nov 12.

Abstract

Confinement effects on protein stability are relevant in a number of biological applications ranging from encapsulation in the cylindrical cavity of a chaperonin, translocation through pores, and structure formation in the exit tunnel of the ribosome. Consequently, free energies of interaction between amino acid side chains in restricted spaces can provide insights into factors that control protein stability in nanopores. Using all-atom molecular dynamics simulations, we show that 3 pair interactions between side chains--hydrophobic (Ala-Phe), polar (Ser-Asn) and charged (Lys-Glu)--are substantially altered in hydrophobic, water-filled nanopores, relative to bulk water. When the pore holds water at bulk density, the hydrophobic pair is strongly destabilized and is driven to large separations corresponding to the width and the length of the cylindrical pore. As the water density is reduced, the preference of Ala and Phe to be at the boundary decreases, and the contact pair is preferred. A model that accounts for the volume accessible to Phe and Ala in the solvent-depleted region near the pore boundary explains the simulation results. In the pore, the hydrogen-bonded interactions between Ser and Asn have an enhanced dependence on their relative orientations, as compared with bulk water. When the side chains of Lys and Glu are restrained to be side by side, parallel to each other, then salt bridge formation is promoted in the nanopore. Based on these results, we argue and demonstrate that for a generic amphiphilic sequence, cylindrical confinement is likely to enhance thermodynamic stability relative to the bulk.

摘要

蛋白质稳定性的受限效应在许多生物学应用中都很重要,这些应用包括伴侣蛋白圆柱状腔体内的封装、通过孔道的转运以及核糖体出口通道中的结构形成。因此,受限空间中氨基酸侧链之间的相互作用自由能可以为控制纳米孔中蛋白质稳定性的因素提供见解。通过全原子分子动力学模拟,我们发现侧链之间的3种配对相互作用——疏水作用(丙氨酸-苯丙氨酸)、极性作用(丝氨酸-天冬酰胺)和带电作用(赖氨酸-谷氨酸)——相对于本体水,在充满水的疏水纳米孔中会发生显著变化。当孔中保持本体密度的水时,疏水对会强烈失稳,并被驱动到与圆柱孔的宽度和长度相对应的大间距。随着水密度降低,丙氨酸和苯丙氨酸在边界处的偏好性降低,接触对更受青睐。一个考虑了孔边界附近溶剂耗尽区域中苯丙氨酸和丙氨酸可及体积的模型解释了模拟结果。在孔中,与本体水相比,丝氨酸和天冬酰胺之间的氢键相互作用对它们相对取向的依赖性增强。当赖氨酸和谷氨酸的侧链被限制为彼此并排、相互平行时,纳米孔中盐桥的形成会得到促进。基于这些结果,我们论证并证明,对于一般的两亲性序列,相对于本体,圆柱状限制可能会增强热力学稳定性。

相似文献

1
Interactions between amino acid side chains in cylindrical hydrophobic nanopores with applications to peptide stability.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17636-41. doi: 10.1073/pnas.0803990105. Epub 2008 Nov 12.
2
Entropy and enthalpy of interaction between amino acid side chains in nanopores.
J Chem Phys. 2014 Dec 14;141(22):22D523. doi: 10.1063/1.4901204.
3
Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores.
J Chem Phys. 2009 Mar 7;130(9):094502. doi: 10.1063/1.3080720.
4
Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
J Mol Biol. 2000 Jul 28;300(5):1335-59. doi: 10.1006/jmbi.2000.3901.
5
Hydrophobic interactions at the Ccap position of the C-capping motif of alpha-helices.
J Mol Biol. 2002 Sep 6;322(1):123-35. doi: 10.1016/s0022-2836(02)00734-9.
6
Solvation thermodynamics of amino acid side chains on a short peptide backbone.
J Chem Phys. 2015 Apr 14;142(14):144502. doi: 10.1063/1.4917076.
10
Interactions between ionizable amino acid side chains at a lipid bilayer-water interface.
J Phys Chem B. 2011 Nov 24;115(46):13674-84. doi: 10.1021/jp2052213. Epub 2011 Nov 1.

引用本文的文献

1
Methane Hydrate-in-Oil Systems in the Presence of Natural Amino Acid-Equilibrium Phase Condition Measurements.
ACS Omega. 2024 Nov 20;9(48):47442-47452. doi: 10.1021/acsomega.4c05430. eCollection 2024 Dec 3.
2
Blobs form during the single-file transport of proteins across nanopores.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2405018121. doi: 10.1073/pnas.2405018121. Epub 2024 Sep 12.
3
Solid-State Nanopores for Biomolecular Analysis and Detection.
Adv Biochem Eng Biotechnol. 2024;187:283-316. doi: 10.1007/10_2023_240.
4
The driving force for co-translational protein folding is weaker in the ribosome vestibule due to greater water ordering.
Chem Sci. 2021 Aug 3;12(35):11851-11857. doi: 10.1039/d1sc01008e. eCollection 2021 Sep 15.
5
Retardation of Folding Rates of Substrate Proteins in the Nanocage of GroEL.
Biochemistry. 2021 Feb 16;60(6):460-464. doi: 10.1021/acs.biochem.0c00903. Epub 2021 Jan 19.
7
Real-Time Conformational Changes and Controlled Orientation of Native Proteins Inside a Protein Nanoreactor.
J Am Chem Soc. 2017 Dec 27;139(51):18640-18646. doi: 10.1021/jacs.7b10106. Epub 2017 Dec 13.
8
Single Molecule Nanopore Spectrometry for Peptide Detection.
ACS Sens. 2017 Sep 22;2(9):1319-1328. doi: 10.1021/acssensors.7b00362. Epub 2017 Aug 16.
9
Smoothing of the GB1 hairpin folding landscape by interfacial confinement.
Biophys J. 2012 Aug 8;103(3):596-600. doi: 10.1016/j.bpj.2012.07.005.
10
Interactions between ionizable amino acid side chains at a lipid bilayer-water interface.
J Phys Chem B. 2011 Nov 24;115(46):13674-84. doi: 10.1021/jp2052213. Epub 2011 Nov 1.

本文引用的文献

1
Factors governing helix formation in peptides confined to carbon nanotubes.
Nano Lett. 2008 Nov;8(11):3702-8. doi: 10.1021/nl8019328. Epub 2008 Sep 26.
2
How hydrophobic buckminsterfullerene affects surrounding water structure.
J Phys Chem B. 2008 Mar 13;112(10):2981-90. doi: 10.1021/jp076416h. Epub 2008 Feb 15.
4
Protein folding under confinement: a role for solvent.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10430-4. doi: 10.1073/pnas.0608256104. Epub 2007 Jun 11.
5
Dynamics of Asp23-Lys28 salt-bridge formation in Abeta10-35 monomers.
J Am Chem Soc. 2006 Dec 20;128(50):16159-68. doi: 10.1021/ja064872y.
6
Hydrophobic and ionic interactions in nanosized water droplets.
J Am Chem Soc. 2006 Oct 18;128(41):13490-6. doi: 10.1021/ja063445h.
7
Nanotube confinement denatures protein helices.
J Am Chem Soc. 2006 May 17;128(19):6316-7. doi: 10.1021/ja060917j.
8
Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces.
J Mol Biol. 2006 Mar 24;357(2):632-43. doi: 10.1016/j.jmb.2005.12.048. Epub 2006 Jan 5.
9
Ribosome exit tunnel can entropically stabilize alpha-helices.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18956-61. doi: 10.1073/pnas.0508234102. Epub 2005 Dec 15.
10
Scalable molecular dynamics with NAMD.
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验