Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2405018121. doi: 10.1073/pnas.2405018121. Epub 2024 Sep 12.
The transport of biopolymers across nanopores is an important biological process currently under investigation for the rapid analysis of DNA and proteins. While the transport of DNA is generally understood, methods to induce unfolded protein translocation have only recently been discovered (Yu et al., 2023, Sauciuc et al., 2023). Here, we found that during electroosmotically driven translocation of polypeptides, blob-like structures typically form inside nanopores, often obstructing their transport and preventing addressing individual amino acids. This is in contrast with the electrophoretic transport of DNA, where the formation of such structures has not been reported. Comparisons between different nanopore sizes and shapes and modifications by different surface chemistries allowed formulating a mechanism for blob formation. We also show that single-file transport can be achieved by using 1) nanopores that have an entry and an internal diameter smaller than the persistence length of the polymer, 2) nanopores with a nonsticky (i.e nonaromatic) inner surface, and 3) moderate translocation velocities. These experiments provide a basis for understanding polypeptide transport under confinement and for improving the design and engineering of nanopores for protein analysis.
生物聚合物跨纳米孔的传输是一个重要的生物过程,目前正在研究用于快速分析 DNA 和蛋白质。虽然 DNA 的传输通常是已知的,但诱导未折叠蛋白质易位的方法最近才被发现(Yu 等人,2023 年;Sauciuc 等人,2023 年)。在这里,我们发现,在电动驱动的多肽跨纳米孔传输过程中,通常会在纳米孔内形成blob 状结构,这些结构常常会阻塞其传输并防止单独寻址氨基酸。这与 DNA 的电泳传输形成对比,在电泳传输中尚未报道此类结构的形成。通过比较不同纳米孔的大小和形状以及不同表面化学性质的修饰,我们提出了 blob 形成的机制。我们还表明,通过使用 1)入口和内部直径均小于聚合物的持久长度的纳米孔,2)具有非粘性(即非芳香族)内表面的纳米孔,以及 3)适中的易位速度,可以实现单分子传输。这些实验为理解受限条件下多肽的传输提供了基础,并为改进用于蛋白质分析的纳米孔的设计和工程提供了依据。