Suppr超能文献

I 型代谢型谷氨酸受体通过蛋白激酶 C 依赖性机制控制脊髓学习的可塑性。

Group I metabotropic glutamate receptors control metaplasticity of spinal cord learning through a protein kinase C-dependent mechanism.

作者信息

Ferguson Adam R, Bolding Kevin A, Huie J Russell, Hook Michelle A, Santillano Daniel R, Miranda Rajesh C, Grau James W

机构信息

Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94110, USA.

出版信息

J Neurosci. 2008 Nov 12;28(46):11939-49. doi: 10.1523/JNEUROSCI.3098-08.2008.

Abstract

Neurons within the spinal cord can support several forms of plasticity, including response-outcome (instrumental) learning. After a complete spinal transection, experimental subjects are capable of learning to hold the hindlimb in a flexed position (response) if shock (outcome) is delivered to the tibialis anterior muscle when the limb is extended. This response-contingent shock produces a robust learning that is mediated by ionotropic glutamate receptors (iGluRs). Exposure to nociceptive stimuli that are independent of limb position (e.g., uncontrollable shock; peripheral inflammation) produces a long-term (>24 h) inhibition of spinal learning. This inhibition of plasticity in spinal learning is itself a form of plasticity that requires iGluR activation and protein synthesis. Plasticity of plasticity (metaplasticity) in the CNS has been linked to group I metabotropic glutamate receptors (subtypes mGluR1 and mGluR5) and activation of protein kinase C (PKC). The present study explores the role of mGluRs and PKC in the metaplastic inhibition of spinal cord learning using a combination of behavioral, pharmacological, and biochemical techniques. Activation of group I mGluRs was found to be both necessary and sufficient for metaplastic inhibition of spinal learning. PKC was activated by stimuli that inhibit spinal learning, and inhibiting PKC activity restored the capacity for spinal learning. Finally, a PKC inhibitor blocked the metaplastic inhibition of spinal learning produced by a group I mGluR agonist. The data strongly suggest that group I mGluRs control metaplasticity of spinal learning through a PKC-dependent mechanism, providing a potential therapeutic target for promoting use-dependent plasticity after spinal cord injury.

摘要

脊髓内的神经元能够支持多种形式的可塑性,包括反应-结果(工具性)学习。在完全脊髓横断后,如果在肢体伸展时向胫骨前肌施加电击(结果),实验对象能够学会将后肢保持在屈曲位置(反应)。这种与反应相关的电击会产生一种由离子型谷氨酸受体(iGluRs)介导的强大学习。暴露于与肢体位置无关的伤害性刺激(例如,不可控电击;外周炎症)会对脊髓学习产生长期(>24小时)抑制。这种对脊髓学习可塑性的抑制本身就是一种可塑性形式,需要iGluR激活和蛋白质合成。中枢神经系统中可塑性的可塑性(元可塑性)与I组代谢型谷氨酸受体(亚型mGluR1和mGluR5)以及蛋白激酶C(PKC)的激活有关。本研究使用行为、药理学和生化技术相结合的方法,探讨了mGluRs和PKC在脊髓学习的元可塑性抑制中的作用。发现I组mGluRs的激活对于脊髓学习的元可塑性抑制既是必要的也是充分的。PKC被抑制脊髓学习的刺激激活,抑制PKC活性可恢复脊髓学习能力。最后,一种PKC抑制剂阻断了I组mGluR激动剂产生的脊髓学习的元可塑性抑制。数据强烈表明,I组mGluRs通过PKC依赖性机制控制脊髓学习元可塑性,为促进脊髓损伤后依赖使用的可塑性提供了潜在的治疗靶点。

相似文献

7
Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro.
Psychopharmacology (Berl). 2017 Feb;234(4):681-694. doi: 10.1007/s00213-016-4503-7. Epub 2016 Dec 28.
9
Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain.
J Biol Chem. 2017 Dec 15;292(50):20644-20654. doi: 10.1074/jbc.M117.818476. Epub 2017 Oct 26.

引用本文的文献

1
Disuse plasticity limits spinal cord injury recovery.
iScience. 2025 Mar 8;28(4):112180. doi: 10.1016/j.isci.2025.112180. eCollection 2025 Apr 18.
2
Understanding the Biological Relationship between Migraine and Depression.
Biomolecules. 2024 Jan 30;14(2):163. doi: 10.3390/biom14020163.
5
The Spinal Cord, Not to Be Forgotten: the Final Common Path for Development, Training and Recovery of Motor Function.
Perspect Behav Sci. 2018 Nov 13;41(2):369-393. doi: 10.1007/s40614-018-00177-9. eCollection 2018 Nov.
6
Brain-Dependent Processes Fuel Pain-Induced Hemorrhage After Spinal Cord Injury.
Front Syst Neurosci. 2019 Sep 10;13:44. doi: 10.3389/fnsys.2019.00044. eCollection 2019.
9
Spinal activation of protein kinase C elicits phrenic motor facilitation.
Respir Physiol Neurobiol. 2018 Oct;256:36-42. doi: 10.1016/j.resp.2017.10.007. Epub 2017 Nov 2.
10
What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.
J Neurotrauma. 2017 May 15;34(10):1831-1840. doi: 10.1089/neu.2016.4562. Epub 2017 Jan 13.

本文引用的文献

2
Peripheral inflammation undermines the plasticity of the isolated spinal cord.
Behav Neurosci. 2008 Feb;122(1):233-49. doi: 10.1037/0735-7044.122.1.233.
3
Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex.
Science. 2008 Jan 4;319(5859):101-4. doi: 10.1126/science.1143808.
7
NMDA receptor trafficking at recurrent synapses stabilizes the state of the CA3 network.
J Neurophysiol. 2007 Nov;98(5):2818-26. doi: 10.1152/jn.00346.2007. Epub 2007 Aug 29.
8
BDNF and learning: Evidence that instrumental training promotes learning within the spinal cord by up-regulating BDNF expression.
Neuroscience. 2007 Sep 21;148(4):893-906. doi: 10.1016/j.neuroscience.2007.05.051. Epub 2007 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验