Suppr超能文献

脊髓内的形质变化:证据表明脑源性神经营养因子(BDNF)、肿瘤坏死因子(TNF)以及 GABA 功能改变(离子型可塑性)调节疼痛和学习能力。

Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn.

机构信息

Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.

Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.

出版信息

Neurobiol Learn Mem. 2018 Oct;154:121-135. doi: 10.1016/j.nlm.2018.04.007. Epub 2018 Apr 7.

Abstract

Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl is down-regulated. This causes the intracellular concentration of Cl to increase, reducing (and potentially reversing) the inward flow of Cl through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.

摘要

有证据表明,行为训练和神经损伤可以引发调节适应潜力的代谢可塑性过程。本研究探讨了一种模型系统,该系统研究了训练如何影响脊髓下部(腰骶部)的学习能力。在脊髓横断后施加尾部的依反应(可控)刺激会引起学习行为的改变。在接受不可控刺激的动物中,不会观察到这种行为变化。暴露于不可控刺激也会引发一种使脊髓学习能力在 24-48 小时内丧失的过程。可控刺激则产生相反的效果;它引发了一个使学习能够进行并防止/逆转不可控刺激引起的学习缺陷的过程。这些观察结果表明,一个学习事件可以影响未来情况下的学习能力,提供了行为代谢可塑性的一个例子。可控刺激的保护/恢复作用与脑源性神经营养因子(BDNF)的上调有关。学习的中断与疼痛(伤害感受)回路的敏化有关,后者是通过 GABA 依赖性抑制的减少而实现的。脊髓损伤(SCI)后,调节氯离子外流的共转运体(KCC2)下调。这导致细胞内氯离子浓度增加,通过 GABA-A 受体的氯离子内流减少(并可能逆转)。GABA 功能的转变(离子可塑性)增加了损伤后尾部的神经兴奋性,并为伤害感受敏化奠定了基础。KCC2 的损伤诱导变化与调节脊髓背角可塑性的下行 5-羟色胺能(5HT)纤维的丧失有关,5-羟色胺能纤维通过 5HT-1A 受体起作用。有证据表明,这些脊髓可塑性的改变会影响大脑依赖任务(位置条件反射)中的疼痛。研究结果表明,离子可塑性可以影响学习潜力,使神经回路从抑制/硬连线转变为兴奋/可塑性。

相似文献

4
Learning to promote recovery after spinal cord injury.学习促进脊髓损伤后的恢复。
Exp Neurol. 2020 Aug;330:113334. doi: 10.1016/j.expneurol.2020.113334. Epub 2020 Apr 28.

引用本文的文献

10
Learning to promote recovery after spinal cord injury.学习促进脊髓损伤后的恢复。
Exp Neurol. 2020 Aug;330:113334. doi: 10.1016/j.expneurol.2020.113334. Epub 2020 Apr 28.

本文引用的文献

7
Spinal metaplasticity in respiratory motor control.呼吸运动控制中的脊髓可塑性
Front Neural Circuits. 2015 Feb 11;9:2. doi: 10.3389/fncir.2015.00002. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验